Team:INSA-UPS France/Model/ODE

System of ODEs

Equations

The dynamics of our microbial consortium was summed up in thirteen differential equations. Every biological or physical process was described mathematically, and was gathered to constitute our system of ODEs. For fearless people, our complete mathematical model and demonstration can be found there!

We need to characterize the growth and death of the three microorganisms: Vibrio cholerae (Vc) in water (W), Vibrio harveyi (Vh) and Pichia pastoris (Pp) in the device (D). \begin{equation} \frac{d[\textit{Vc}]_W}{dt} = V_{growth,Vc} - V_{death,Vc} \end{equation} \begin{equation} \frac{d[\textit{Vh}]_D}{dt} = V_{growth,Vh} - V_{death,Vh} \end{equation} \begin{equation} \frac{d[\textit{Pp}]_D}{dt} = V_{growth,Pp} - V_{death,Pp} \end{equation}

Microorganisms death is impacted by antimicrobial peptides production(AMPpeptide,Pp), produced by translation of antimicrobial peptides mRNA (AMPRNA). Peptides and mRNA are also degraded. \begin{equation} \frac{d[AMP_{RNA}]_{Pp}}{dt}=V_{transcription,AMP} - V_{degradation,AMP RNA} \end{equation} \begin{equation} \frac{d[AMP_{peptide}]_{D}}{dt}=V_{translation,AMP} - V_{degradation,AMP} + \frac{V_{diff,AMP,W \to D}}{\mathcal{V}_D} \end{equation}

These peptides are transfered from the device (D) to water (W). \begin{equation} \frac{d[AMP]_W}{dt} = -V_{diff,AMP,W\to D} \end{equation}

To produce antimicrobial peptides, an activation by diacetyl (dac) is needed. Diacetyl can freely diffuse from the device (D) to water (W). \begin{equation} \frac{d[dac]_D}{dt}=V_{prod,dac}+\frac{V_{diff,dac,W \to D}}{\mathcal{V}_D} \end{equation} \begin{equation} \frac{d[dac]_W}{dt}=- V_{diff,dac,W \to D} \end{equation}

Diacetyl is produced by the enzyme acetolactate synthase (ALSenzyme). Als gene is first transcribed into ALSRNA, which is then translated into the protein. Both the enzyme and its mRNA can be degraded. \begin{equation} \frac{d[ALS_{RNA}]_{Vh}}{dt} = V_{transcription,ALS} - V_{degradation,ALS RNA} \end{equation} \begin{equation} \frac{d[ALS_{enzyme}]_{Vh}}{dt} = V_{translation,ALS} - V_{degradation,ALSenzyme} \end{equation}

ALS production has to be activated by the quorum sensing molecule CAI-1, initially in water (W), after diffusing into the device (D). \begin{equation} \frac{d[CAI\text{-}1]_D}{dt} = \frac{V_{diff,CAI\text{-}1,W\to D}}{\mathcal{V}_D} \end{equation} \begin{equation} \frac{d[CAI\text{-}1]_W}{dt} = -V_{diff,CAI\text{-}1,W\to D} \end{equation}

Data

Our model is mostly set by data from publications, because the majority of the required data necessitates complex experiments we could not perform during our project.

Name Notation Unit Value Reference
Vibrio cholerae maximum growth rate μMAX,Vc s-1 3.10-4 BioNumbers 112369 (1)
Leucrocine I MIC for V. cholerae MICLeucro,Vc mol/L 6.4.10-5 Pata et al., 2011 (2)
Leucrocine I MIC for V. harveyi MICLeucro,Vh mol/L 6.4.10-5 Pata et al., 2011 (2) - Extrapolation from V. cholerae result
Leucrocine I MIC for P. pastoris MICLeucro,Pp mol/L Assuming no effects on Pichia pastoris
Leucrocine I IC50 for V. cholerae MICLeucro,Vc mol/L 1.92.10-4 Considering IC50 = 3.MIC - Extrapolation of data from standard antibiotics (Farrag et al., 2015)
Leucrocine I IC50 for V. harveyi IC50Leucro,Vh mol/L 1.92.10-4 Considering IC50 = 3.MIC - Extrapolation of data from standard antibiotics (Farrag et al., 2015 (3))
Leucrocine I IC50 for P. pastoris IC50Leucro,Pp mol/L Assuming no effects on Pichia pastoris
cOT2 MIC for V. cholerae MICcOT2,Vc mol/L 8.1.10-6 Prajanban et al., 2017 (4)
cOT2 MIC for V. harveyi MICcOT2,Vh mol/L 8.1.10-6 Prajanban et al., 2017 (4) - Extrapolation from V. cholerae result
cOT2 MIC for P. pastoris MICcOT2,Pp mol/L Assuming no effects on Pichia pastoris
cOT2 IC50 for V. cholerae IC50cOT2,Vc mol/L 2.43.10-5 Considering IC50 = 3.MIC - Extrapolation of data from standard antibiotics (Farrag et al., 2015)
cOT2 IC50 for V. harveyi IC50cOT2,Vh mol/L 2.43.10-5 Considering IC50 = 3.MIC - Extrapolation of data from standard antibiotics (Farrag et al., 2015)
cOT2 IC50 for P. pastoris IC50cOT2,Pp mol/L Assuming no effects on Pichia pastoris
D-NY15 MIC for V. cholerae MICD-NY15,Vc mol/L 1.54.10-5 Yaraksa et al., 2014 (5)
D-NY15 MIC for V. harveyi MICD-NY15,Vh mol/L 1.54.10-5 Yaraksa et al., 2014 (5) - Extrapolation from V. cholerae result
D-NY15 MIC for P. pastoris MICD-NY15,Pp mol/L Assuming no effects on Pichia pastoris
D-NY15 IC50 for V. cholerae IC50D-NY15,Vc mol/L 4.62.10-5 Considering IC50 = 3.MIC - Extrapolation of data from standard antibiotics (Farrag et al., 2015)
D-NY15 IC50 for V. harveyi IC50D-NY15,Vh mol/L 4.62.10-5 Considering IC50 = 3.MIC - Extrapolation of data from standard antibiotics (Farrag et al., 2015)
D-NY15 IC50 for P. pastoris IC50D-NY15,Pp mol/L Assuming no effects on Pichia pastoris
V. cholerae death rate with AMP kkill,Vc s-1 3.10-3 Yaraksa et al., 2014 (5)
V. harveyi death rate with AMP kkill,Vh s-1 3.10-3 Extrapolation from Yaraksa et al., 2014 (5)
P. pastoris death rate with AMP kkill,Pp s-1 0 Assuming no effects
Transfer coefficient through the membrane K s-1 1 Arbitrary value
Number of als gene per cell alsDNA,0 Nb/cell 15 Considering a low copy plasmid (6)
Number of AMP gene per cell AMPDNA,0 Nb/cell 1 Protocol: genomic integration
V. harveyi transcription rate ktranscript,Vh nt/s 30 Molecular Biology course, Transcription - Faculté des Sciences - Rabat (7)
Vibrio harveyi transcription rate ktranslation,Vh nt/s 15 Molecular Biology course, Translation - Faculté des Sciences - Rabat (8)
als gene promoter influence kP,als / 1 Inductible promoter
AMP gene promoter influence kP,AMP / 1 Inductible promoter
mRNA degradation constant Kdeg,mRNA s-1 5.10-3 Esquerré 2015 (9)
als gene length DNA length nucleotides 1662 UniProtKB - Q7DAV2 (10)
als mRNA length RNA length nucleotides 1730 Parts design
Number of CqsS* receptor per cell CqsS*/cell Nb/cell 1015 Arbitrary value
Number of Odr10 receptor per cell Odr10/cell Nb/cell 1015 Arbitrary value
Pichia pastoris transcription rate ktranscript,Pp nt/s 50 Molecular Biology course - INSA Toulouse
Pichia pastoris translation rate ktranslation,Pp nt/s 48 Molecular Biology course, Translation - Faculté des Sciences - Rabat (8)
AMP gene length DNA length nucleotides 360 Parts design
AMP mRNA length RNA length nucleotides 651 Parts design
Vibrio cholerae minimal pathogenic concentration [Vc]pathogenic cell/L 4.104 Medical Microbiology 4th edition (11)
CAI-1 initial concentration [CAI-1]0 mol/L 1.10-5 Ng et al., 2011 (12)
Michaelis-Menten constant of acetolactate synthase KM,ALS mol/L 1.36.10-2 Atsumi et al., 2009 (13)
Catalytic rate constant of acetolactate synthase kcat,ALS s-1 1.21.102 Atsumi et al., 2009 (13)
Degradation constant of acetolactate synthase Kdeg,ALS s-1 0 Assuming a negligeable value in our conditions
Degradation constant of antimicrobial peptides Kdeg,AMP s-1 0 Aleinein et al., 2013 (14)
Activation constant of CqsS*-CAI-1 complex Ka,CqsS*-CAI-1 mol/L 3.6.10-8 Ng et al., 2011 (12)
High Vibrio cholerae concentration in water [Vc]0 cell/L 1.107 Huq et al., 1984 (15)
Dry weight of a bacterial cell DWVh pg/cell 0.28 BioNumbers 100008
Volume of a bacterial cell Vintra,Vh μm3 1 BioNumbers 100004
Volume of a yeast cell Vintra,Pp μm3 66 BioNumbers 100452
Dry weight of a yeast cell DWPp pg/cell 18.48 Estimation from yeast cell volume and ratio dry weight/volume for a bacterial cell
Ribosome density on a yeast cell Nb/kb 6.5 BioNumbers 103026
Number of ribosome on AMP mRNA Ribosome/RNA Nb/RNA 2.34 Deduced from ribosome density and mRNA length
RNA polymerase density on a yeast gene Nb/kb 6.5 BioNumbers 103026
Number of RNA polymerase on AMP DNA RNA polymerase/DNA Nb/DNA 4.95 BioNumbers 108308
Ribosome density on a bacterial mRNA Nb/kb 6.6 BioNumbers 107727
Number of ribosome on als mRNA Ribosomes/RNA Nb/RNA 11 Deduced from ribosome density and mRNA length
RNA polymerase density on a bacterial gene Nb/kb 7.6 Assuming the same density than yeast (BioNumbers 108308)
Number of RNA polymerase on als DNA RNA Polymerase/DNA Nb/DNA 13 Deduced from RNA polymerase density and DNA length
Pyruvate concentration in a bacterial cell [S] mol/L 3.9.10-4 BioNumbers 101192

Even if we mostly describe our model as a predictive one, some preliminary experimental results could have been implemented into our model. Indeed, an experimental estimation of our two chassis behaviour on a common medium was needed.

Name Notation Unit Value Reference
Vibrio harveyi JMH626 maximum growth rate μMAX,Vh s-1 2.10-4 Experiment - 21/06/17
Pichia pastoris SMD1168 maximum growth rate μMAX,Pp s-1 4.10-5 Experiment - 21/06/17
Vibrio cholerae lag time tl,Vc s 1800 Experiment - 21/06/17, extrapolation from V. harveyi growth
Vibrio harveyi lag time tl,Pp s 1800 Experiment - 21/06/17
Pichia pastoris lag time tl,Pp s 14 400 Experiment - 21/06/17

Solver

The system of ODEs was solved using Matlab R2017a, thanks to the free offer from iGEM. Initially set with ode45 solver, the recommanded Matlab ODE solver, the final script uses ode15s because ode45 was not enough efficient. ode15s is the solver recommanded when having problems or inefficiency with ode45, and is adapted to stiff problems.(16)

You can freely re-use our code: General_resolution + System_of_ODEs.

References

  • (6) : http://bitesizebio.com/22824/how-to-manipulate-plasmid-copy-number/
  • (16) : https://fr.mathworks.com/help/matlab/math/choose-an-ode-solver.html