

Plasmid Assembly Protocol with Golden Gate Assembly

- Select a 20 nt protospacer of interest. The 3' protospacer adjacent sequence (PAM) must be NGG, where N is any nucleotide. Preference is given to:
 - Sequences with purines occupying the last four (3') bases of the protospacer.
 - ◊ Sequences on the non-coding strand.
 - Sequences in which the last 12 nt of protospacer + 3 nt PAM (15 nt total) are unique in the genome (check by BLAST with all four possible NGG sequences).
- Design two 24 nt oligonucleotides (4 nt 5' sticky end + 20 nt spacer sequence) with the sticky ends ACGC on the forward primer and AAAC on the reverse primer.
- For single spacers, anneal spacer oligos as follows
 - \diamond Resuspend both oligos to 100 μM in water
 - $\diamond~$ Mix 5 μL FOR + 5 μL REV + 90 μL 30 mM HEPES, pH 7.8
 - ♦ Heat to 95 °C for 5 min, then ramp to 4 °C at 0.1 °C/sec
- Insert annealed spacer (or dual+spacer synthetic construct) by Golden Gate assembly.
 - X μL Backbone (100 ng)
 - ◊ 0.3 µL Insert
 - ◊ 2 µL T4 Ligase Buffer (NEB)
 - \circ 1 µL T4 ligase (NEB)
 - 1 μL BbsI (NEB)
 - $\diamond~$ Fill up to 20 μL with H_2O

• Golden Gate Program:

	°C	min
9x	37.0	10
	16.0	10
	50.0	5
	65.0	20
	4.0	PAUSE

- Transform 3 µL of each reaction to E. coli NEB5alpha by heat shock
- Plate 10% of recovery culture on selective plates with 10 μL of 0.5 M IPTG and 40 μL of 20 mg mL⁻¹ Bluo-gal (in DMSO).
- Pick white colonies to selective LB and recover plasmid
- **Cobb, R.E., Wang, Y., and Zhao, H.** (2014). High-Effi ciency Multiplex Genome Editing of Streptomyces Species Using an Engineered CRISPR/Cas System.: 1–12.