IGEM team SIAT-SCIE Modelling

part - an intuitive summary

Dsup - the key protein that protects tardigrades from

 lethal dosage of radiation
Part 0 - Kinetic based model I ${ }^{\text {st }}$ edition backup

The primary focus - Survival rate

The survival rate is a key variable in our model, as it is the most easy one to be accurately quantified (via standarised protocols of flow cytometer), and directly reflects the DSB break, robustness of our cell thus the degree of protection offered by Dsup.
Survival rate (s)
Factor 1: DSB contribution (Q1)
Factor 2: Protein denature distribution (Q2)
Factor 3: Membrane damage distribution (Q3)

$$
\mathrm{S}=\mathrm{Q} 1 \text { * Q2 * Q3 }
$$

When radiation dosage $(D)=0, Q 1=Q 2=Q 3=1$

Reaction mechanism

The very underlying assumptions

1. ROS, DSB \& Radiation are all 1st order reaction
2. Since ROS transfer charges to DNA, causing DSB, ROS itself is lost in this process.
3. As ROS damage the proteins in the cell, both ROS and protein repairing functionality are lost.
4. Super-oxide Dismutase (SoD) are not considered in this model.

ODEs

$$
\begin{aligned}
& \frac{d D S B}{d t}=C_{1} R+C_{2} R O S \\
& \frac{d R O S}{d t}=C_{3} R-C_{2} R O S-C_{4} R O S * P R \\
& \frac{d P R}{d t}=-C_{4} R O S * P R
\end{aligned}
$$

And therefore, our goal is to combine the equations into non-linear ODE system, and estimate the constants given initial conditions.
Thus, via substitution, compute numerical solution for DSB.

Limitations

- Reliable direct measurement of DSB unavailable
- Estimation may not have a high accuracy or confidence
- Other factors we failed to take into account may affect the model

Part I - Kinetic based model

Reference: "A model of interactions between radiationinduced oxidative stress, protein and DNA damage in
Deinococcus radiodurans" I. Shuryak et al, 2009

Schematic diagram

From "A model of interactions between radiation-induced oxidative stress, protein and DNA damage in Deinococcus radiodurans"
We will explain the notations in math modelling parts below.

Reactions

ROS + A -> ROSC
ROSC -> A (ROS elimination)

ROS + PR -> ϕ (Protein repair)
PR + DSB -> PR
ROS = reactive oxygen species
PR = proteins needed for DNA repair
A = antioxidants

Modelling

Protein oxidation (differential equations):

Assume ROS react with A and $P R$ via $1^{\text {st }}$ order equation, then
$\frac{d \operatorname{ROS}[t]}{d t}=c_{1} * D_{2}-c_{2} * \operatorname{ROS}[t] * A[t]-c_{3} * \operatorname{ROS}[t]$
In the reaction above:
$D_{2}=\frac{d \mathrm{D}}{\mathrm{dt}}$
That is, ROS induced by radiation dosage
$\operatorname{ROS}[t]$ * $\mathrm{A}[\mathrm{t}$]
ROS + A -> ROSC (antioxidants elimination)
The last term refers to natural ROS elimination, we assume that it is a $1^{\text {st }}$ order equation

Then, we have

$$
\frac{d A[t]}{d t}=-c_{2} * \operatorname{ROS}[t] * A[t]+c_{4} * \operatorname{ROSC}[t]
$$

The $1^{\text {st }}$ term refers to reaction ROS + A -> ROSC
The $2^{\text {nd }}$ term means that ROSC -> A

Intuitively,

```
\(\frac{d \operatorname{ROSC}[t]}{d l t}=c_{2} * \operatorname{ROS}[t] * A[t]-c_{4} * \operatorname{ROSC}[t]\)
```

Finally we have

```
\(\frac{d \operatorname{PR}[t]}{d t}=c_{5}-c_{6} * P R+G * \operatorname{ROS}[t] * \operatorname{PR}[t](*\) equations \(1 *)\)
```

Where c_{5} is the synthesis rate of protein, c_{6} term refers to natural protein degradation, last term represents ROS + PR -> ϕ

Protein oxidation modelling:

Under background condition, at equilibrium,

```
\(\frac{d \operatorname{PR}[t]}{d l t}=0\)
\(\mathrm{C}_{5}-\mathrm{C}_{6}\) *PR[t]= 0
\(\operatorname{PR}[\mathrm{t}]=\frac{\mathrm{C}_{5}}{\mathrm{C}_{6}}\)
```

Assume antioxidants and ROSC always exists in equilibrium, sum of $\mathrm{A}, A_{\text {total }}$ is considered to be constant, hence, from equation1, we have

```
\(\frac{d \operatorname{ROS}[t]}{d t t}=c_{1} * D_{2}-\frac{c_{2} * C_{4} * \operatorname{ROS}[t] * A_{t o t a l}}{c_{4}+c_{2} * \operatorname{ROS}[t]}-c_{3} * \operatorname{ROS}[t]\)
\(\frac{d \operatorname{PR}[t]}{d t}=c_{5}-\left(c_{6}+c_{7} * \operatorname{ROS}[t]\right) * \operatorname{PR}[t](*\) equations \(2 *)\)
```

Assume the kinetics of ROS production and removal are faster than those of protein turnover, have ROS always exist as an equilibrium concentration ROS $_{\text {eq }}$

```
\(\frac{d \operatorname{ROS}[t]}{d \operatorname{t}}=0\)
\(\operatorname{ROS}_{\text {eq }}=\frac{\left(c_{2} * x_{1}-c_{3} * c_{4}+x_{3^{\frac{1}{2}}}\right)}{2 c_{2} * c_{3}}\)
\(x_{1}=c_{1} * D_{2}-c_{4} * A_{\text {total }}\)
\(\mathrm{x}_{2}=\mathrm{C}_{1} * \mathrm{D}_{2}+\mathrm{C}_{4} * A_{\text {total }}\)
\(x_{3}=c_{2}{ }^{2} * x_{1}{ }^{2}+2 c_{2} * c_{3} * c_{4} * x_{2}+\left(c_{3} * c_{4}\right)^{2}(*\) equations \(3 *)\)
```

Substitute $\mathrm{ROS}_{\text {eq }}$ in equations 3 in equations e, yield $P R_{\text {eq }}$:
$\mathrm{PR}_{\mathrm{eq}}=\left(2 \mathrm{c}_{2} * \mathrm{c}_{3} * \mathrm{c}_{5}\right) /\left(\mathrm{c}_{2}\left(\mathrm{c}_{7} * \mathrm{x}_{1}+2 \mathrm{c}_{3} * \mathrm{c}_{6}\right)-\mathrm{c}_{7}\left(\mathrm{c}_{3} * \mathrm{c}_{4}-\mathrm{x}_{3^{\frac{1}{2}}}\right)\right)(*$ equation $4 *)$

DNA damage:

Assume DSB is only induced by radiation dosage, rather than ROS

$$
\frac{d \operatorname{DSB}[t]}{d t}=c_{8} * D_{2}-c_{9} * \operatorname{PR}[t] * \operatorname{DSB}[t](* \text { equation } 5 *)
$$

This equation represents $D S B$ induced by radiation dosage, and protein repair ($P R+D S B->P R$)

Substitute $\mathrm{PR}_{\text {eq }}$ in equation 4 to equation 5
$\mathrm{DSB}_{\text {eq }}=\frac{\mathrm{C}_{8} * \mathrm{D}_{2}}{\mathrm{C}_{9} * \mathrm{PR}_{\text {eq }}}$

Acute radiation exposure (high-dosage rate)

By the time radiation is over, for example $t=\frac{D_{2}}{D}$, the concentration of active protein PR_{d} can be calculated from eqns (2), (3) and assume that $\operatorname{PR}[t=0]=\frac{c_{5}}{c_{6}}$

$$
\begin{aligned}
& \mathbf{P R}_{\mathbf{d}}=\left(\mathbf{c}_{\mathbf{5}}\left(\frac{2 \mathbf{c}_{\mathbf{2}} * \mathbf{c}_{\mathbf{3}} * \mathbf{c}_{6}}{\mathbf{y}_{2}}+\mathbf{c}_{7}\left(\mathbf{y}_{1}{ }^{\frac{1}{2}}+\mathbf{c}_{\mathbf{2}} * \mathbf{x}_{\mathbf{1}}-\mathbf{c}_{\mathbf{3}} * \mathbf{c}_{4}\right)\right) * \mathbf{y}_{2}\right) / \\
& \quad\left(\mathbf{c}_{6}\left(\mathbf{c}_{7} * \mathbf{y}_{1}^{\frac{1}{2}}+\mathbf{c}_{7}\left(\mathbf{c}_{\mathbf{2}} * \mathbf{x}_{1}-\mathbf{c}_{3} * \mathbf{c}_{4}\right)+\mathbf{2} * \mathbf{c}_{2} * \mathbf{c}_{3} * \mathbf{c}_{6}\right)\right) \\
& P R_{d}=c_{5}\left[2 c_{2} c_{3} c_{6} / Y_{2}+c_{7}\left(Y_{1}^{1 / 2}+c_{2} X_{1}-c_{3} c_{4}\right)\right] Y_{2} /\left[c _ { 6 } \left(c_{7} Y_{1}^{1 / 2}\right.\right. \\
& \left.\left.+c_{7}\left(c_{2} X_{1}-c_{3} c_{4}\right)+2 c_{2} c_{3} c_{6}\right)\right], \text { where } X_{1}=c_{1} R-c_{4} A_{t o t}, \\
& Y_{1}=c_{4}^{2}\left(c_{2} A_{t o t}+c_{3}\right)^{2}+2 c_{1} c_{2} c_{4} R\left(c_{3}-c_{2} A_{t o t}\right)+\left(c_{1} c_{2} R\right)^{2}, \\
& Y_{2}=\exp \left[-D o s e\left(c_{7} Y_{1}^{1 / 2}+c_{2}\left(2 c_{3} c_{6}+c_{7} X_{1}\right)-c_{3} c_{4} c_{7}\right) /\left(2 c_{2} c_{3} R\right)\right]
\end{aligned}
$$

(* equations 7 *)

Assuming radiation is acute, no DSB can be repaired during exposure, the number of DSB's just after exposure is $\mathrm{DSB}_{d}=c_{8}{ }^{*} \mathrm{D}$
PR_{d} is given by equations 7 , over the time after exposure,

```
\(\frac{d \operatorname{DSB}[t]}{d t}=-c_{9} * \operatorname{PR}[t] * \operatorname{DSB}[t]\)
\(\frac{d \operatorname{PR}[t]}{d t}=c_{5}-c_{6} * \operatorname{PR}[t](*\) equations \(8 *)\)
```

Solve equations 8 analytically

$$
\begin{gathered}
D S B(t)=c_{8} \text { Dose } \exp \left[-c_{9}\left(c_{6}\left(c_{5} t+P R_{\mathrm{d}}\right)+\left(c_{5}-c_{6} P R_{d}\right) \exp \left[-c_{6} t\right]\right.\right. \\
\left.\left.-c_{5}\right) / c_{6}{ }^{2}\right]
\end{gathered}
$$

$$
P R(t)=\left[\left(c_{6} P R_{d}-c_{5}\right) \exp \left[-c_{6} t\right]+c_{5}\right] / c_{6}
$$

Define $t_{\text {rep }}$: the time that all repair is completed
Survival rate $S=e^{-D S B\left[t_{\text {rep }}\right]}$

Part II - Model based on fitting

Reference: 'A discrete cell survival model including repair after high dose-rate of ionising radiation', W. Santag

