
Combinatorics of Sup35 - YFP Amyloids

Daniel Chen - Waterloo iGEM

June 2017

1 Introduction

An amyloid is just a stack of proteins for our purposes. The proteins, labelled say A,B,C,...
will form block patterns as they stack: ABBACCBCBCA...

Looking at it this way, it becomes possible to analyze the properties of these amyloids
using classical combinatorial enumeration methods.

2 Analysis of exclusively YFP Amyloids

Let us analyze the simplified case where the two halves of Yellow Fluorescent Protein (YFP)
form an amyloid. Call the distinct halves A and B. There are no restrictions on the patterns
in the amyloid - our regular expression will be {A,B}∗. To justify this, we are assuming that
two proteins can be attracted to each other and held close through, say, London Dispersion
Forces [we also have experimental evidence to show this happening for YFP].

We are interested in positions of an amyloid where A and B come together and fuse,
producing yellow fluorescence.

Clearly, there are 2n possible amyloids of length n.
We will start with the case where the halves of Split-YFP are well-mixed and of equal

concentrations and are thus equally likely to appear as the next protein in an amyloid
sequence.

2.1 Lighting Patterns

Now let us abstract away from A and B specifically and just analyze the lighting-patterns
of amyloids of length n.

We first ask: How many distinct patterns of fluorescing locations could we possibly see
from an amyloid of length n?

Suppose we had an amyloid starting with A. We can proceed to add proteins to the
amyloid, but instead of labelling them by what protein they actually are, we can label them
by their functionality. If the protein at the current position causes the previous to fluoresce,
then we put a 1, in analogy to a ”successful coin toss”. Otherwise, we put a 0 for a ”failure”.
Note that a protein can never cause the previous protein to fluoresce if the previous protein
was already fluorescing. For example, ABA becomes 010.

For example, if we have ABBAAAAABA, then reading from left to right (because we
have to think about how these proteins were added one at a time to analyze which ones
fused), we get the functional abstraction 0101000010. Juxtaposition reveals:

1

2 ANALYSIS OF EXCLUSIVELY YFP AMYLOIDS 2

ABBAAAAABA

0 10 10 00 01 0

We always start with a 0, since the first protein cannot cause the (non-existent) previous
protein to fluoresce. Doing this, we no longer need think about whether we started with an
A or a B.

As another example,

BBBBABABABABABABABAAAABAABABBBBABA

0 00 01 01 01 01 01 01 01 01 00 01 00 10 10 00 10 1

We notice that our unambiguous regular expression for these 01 block patterns is (0∗01)∗0∗.
Note that if we were looking at an amyloid without knowing what the proteins actually
were, we would still be able to identify its 01 block pattern by looking at the fluorescing
locations. Indeed, each fluorescing location corresponds to a 1.

We can count the total number of distinct 01 block patterns of length n by using
generating functions. Our function G(x) is simply

G(x) :=
∞∑
i=0

anx
n =

1

1−
(
x2

1−x

) =
1− x

1− x− x2

so that

an − an−1 − an−2 =

1, if n = 0

−1, if n = 1

0, if n ≥ 2

This is a standard technique of reading off the recursive formula from the rational
function representation of the generating function. To be explicit, this follows because:

G(x) :=
∞∑
i=0

aix
i =

1− x
1− x− x2

=⇒
∞∑
i=0

aix
i −

∞∑
i=0

aix
i+1 −

∞∑
i=0

aix
i+2 = 1− x

=⇒
∞∑
i=0

(ai − ai−1 − ai−2)xi = 1− x,where ai := 0 for i < 0

so that we get what was claimed.
Anyways... we see that a0 = 1, a1 = 0, a2 = 1, a3 = 1, a4 = 2, a5 = 3, a6 = 5 etc...
So an = Fn−2, where Fn is the nth Fibonacci number assuming F0 = F1 = 1.

2.2 Probability of k fluorescing locations in length n amyloid

Now lets analyze the probability of seeing k fluorescing pairs of proteins in an amyloid of
length n.

2 ANALYSIS OF EXCLUSIVELY YFP AMYLOIDS 3

2.2.1 Distinct block patterns with k 1s

First, let us count the number of block patterns of length n with k 1s. Our invariant states
that no 1’s may be adjacent. Furthermore, the first digit must be a zero. These are the
only restrictions. So we can count the number of ways of putting k objects into n− 1 boxes
such that no two chosen boxes are adjacent. This number is:

#(n, k) =

(
n− k
k

)
, k ≤ bn/2c

A proof can be found at [1].

2.2.2 Distinct amyloids with k 1s

Now, the number of distinct amyloids with k fluorescing pairs is:

A(n, k) = 2k ·#(n− 2, k − 1) + 2k+1 ·#(n− 1, k)

To see this, we have two cases, where we fix k = 5 for the sake of example:
Block pattern ends with a 0
Consider the following block pattern. We write the number of possible proteins (A or

B) at that location below the corresponding location of the block pattern.

000010000101001000010000

211112111121211211112111

Indeed, for each block of 0’s, at the beginning of the block, any of either A or B may
appear there, since it will not fuse with the previous protein. Then thereafter each protein
is uniquely determined by this choice through to the 1 that appears.

Any block pattern of this case therefore has 2k+1 possible amyloids associated with it.
There are #(n− 1, k) possible patterns for this case.

Block pattern ends with a 1
Consider the following block pattern. We write the number of possible proteins (A or

B) at that location below the corresponding location of the block pattern.

000010000101001000000001

211112111121211211111111

As we can see, putting a 1 at the end of the block pattern implies only 2k possible
amyloids with the particular pattern. There are #(n−2, k−1) patterns with this property.

Hence the probability of seeing k fluorescing pairs in an amyloid of length n is

P (n, k) =
A(n, k)

2n

2.3 Probability of at least m fluorescing locations

The probability of seeing at least m fluorescing pairs on an amyloid of length n is simply
the sum:

P≥(n,m) =
1

2n

bn/2c∑
k=m

A(n, k)

since the events k = m, . . . , bn/2c are independent.

2 ANALYSIS OF EXCLUSIVELY YFP AMYLOIDS 4

2.4 Expected number of fluorescing locations

This is simply the sum:

E(n) =
1

2n

bn/2c∑
k=0

k · A(n, k)

by definition of expected value.

2.5 Expected percentage of proteins involved in fluorescence

This is the number:

R(n) =
2E(n)

n

Note that it is conjectured that

R(n) = 2/3

due to a computer simulation using the following script in Python:

#!/usr/bin/python

import math

import matplotlib.pyplot as plt

#The binomial coefficient nCk...

def binom(n, k):

if k > n or k < 0:

return 0

a = math.factorial(n)

b = math.factorial(k)

c = math.factorial(n - k)

return a / (b * c)

#This is the #(n,k) function I defined in my writeup...

def num(n, k):

return binom(n - k, k)

#This is the A(n,k) function I defined in my writeup...

def A(n, k):

return pow(2, k) * num(n - 2,k - 1) + pow(2, k + 1) * num(n - 1, k)

#The expected number of fluorescing locations in a length n

#amyloid, according to formula I derived, is:

def expected_value(length):

result = 0.0

for i in range(0, int(length / 2)):

result += i * A(length, i)

2 ANALYSIS OF EXCLUSIVELY YFP AMYLOIDS 5

result /= pow(2, length)

return result

if __name__ == ’__main__’:

for i in range(4, 1000):

r = 2 * expected_value(i) / i

print "{}: {}".format(i, r)

which produces the following sample of the output:

2: 0.5

3: 0.5

4: 0.5625

5: 0.575

6: 0.59375

7: 0.602678571429

8: 0.611328125

9: 0.6171875

10: 0.622265625

11: 0.626242897727

12: 0.629638671875

13: 0.632474459135

14: 0.634922572545

15: 0.637036132813

16: 0.638889312744

17: 0.640522676356

18: 0.641975402832

19: 0.643274809185

20: 0.644444465637

21: 0.645502635411

22: 0.646464651281

23: 0.647342992866

24: 0.648148149252

25: 0.648888888359

...

417: 0.665600852651

As a graph, the first 400 values appears as:

3 INTRODUCING SUP-35 INTO AMYLOIDS 6

where the blue line is 2/3 and the orange is our data.

3 Introducing Sup-35 into Amyloids

We now want to consider the facts above but with the introduction of Sup-35 (which we
label with an S) into our amyloids. Our amyloids now come from the regular expression
{A,B, S}∗. We would like to first analyze the case where Sup-35 and the halves of Split-
YFP come in equal concentrations, and are thus equally likely to occur as the next protein
in an amyloid sequence.

3.1 Number of distinct lighting patterns

The introduction of Sup-35 does not change this. When we abstract away the details we are
still looking at block patterns of the form (0∗01)∗0∗. Hence we have Fn−1 distinct lighting
patterns for an amyloid of length n.

3.2 Probability of k fluorescing locations in length n amyloid

The number of amyloids of length n with k fluorescing locations is:

A(n, k) =
n−2k∑
q=0

bq
∑

∑k
i=1 φi=n−q
φi≥2

k∏
i=1

aφi

where a0 = a1 = 0, a2 = 2, ai = 2ai−1 + ai−2, i > 2 and b0 = 1, b1 = 3, bi = 2bi−1 +
bi−2, i > 1.

Explicitly,

bn = − 1

2 + 2
√

2
·
(

1

−1−
√

2

)n
− 1

2− 2
√

2
·
(

1

−1 +
√

2

)n
, n ≥ 0

3 INTRODUCING SUP-35 INTO AMYLOIDS 7

and

an =

{
0, if n = 0
3+2
√
2√

2+2

(
1

−1−
√
2

)n
− 3−2

√
2√

2−2

(
1

−1+
√
2

)n
, if n ≥ 1

And so the probability of k fluorescing locations in an amyloid of length n is 1/3nA(n, k).
The idea of this formula is precisely as follows. q is the length of the tail of zeroes at

the end of the amyloid, functionally speaking. bq represents the number of A-B-S block
patterns of length q of the form 000...0. There are then k functional blocks of the form
(0 ∗ 01) preceding the tail, and φi represents the length of the ith block. aφi represents the
number of A-B-S block patterns of length φi of the functional form 0000...01. With this in
mind, the reader can confirm the formula claimed.

Let us show all of this...
Firstly, bi represents the number of A-B-S block patterns represented by a 0-1 block

pattern of the form 00000....0 where there are precisely i 0’s. To obtain the recursive
formula, we note that the A-B-S block patterns of this type are represented by the A-B-S
regular expression

S∗{AA∗SS∗, BB∗SS∗}∗{AA∗, BB∗, φ}
where φ is the empty set,
and so the generating function is

G(x) =

∞∑
i=0

bix
i =

1

1− S
· 1

1−
(

A
1−A ·

S
1−S + B

1−B ·
S

1−S

) · (A

1−A
+

B

1−B
+ 1

)
.

Setting A = B = S = x where x is an indeterminate, we have that bi represents as
stated above. Then doing some algebra the reader can confirm that

G(x) =
1 + x

1− 2x− x2
and so

bn − 2bn−1 − bn−2 =

1, if n = 0

1, if n = 1

0, if n ≥ 2

where the technique to read off this recursion formula has already been discussed. Then
we get what we claimed about the bi’s earlier.

To get the closed form formula for the value of bi, do partial fractions on the generating
function:

∞∑
i=0

bix
i = G(x) =

1 + x

1− 2x− x2
=

(1/2)

(−1−
√

2)− x
+

(−1/2)

(−1 +
√

2)− x

= − 1

2 + 2
√

2
· 1

1− (1/(−1−
√

2))x
− 1

2− 2
√

2
· 1

1− (1/(−1 +
√

2))x

= − 1

2 + 2
√

2

∞∑
i=0

(
1

−1−
√

2

)i
xi − 1

2− 2
√

2

∞∑
i=0

(
1

−1 +
√

2

)i
xi

3 INTRODUCING SUP-35 INTO AMYLOIDS 8

Therefore we explicitly get

bn = − 1

2 + 2
√

2
·
(

1

−1−
√

2

)n
− 1

2− 2
√

2
·
(

1

−1 +
√

2

)n
, n ≥ 0

as claimed.
Likewise, ai represents the number of A-B-S block patterns represented by a 0-1 block

pattern of the form 000...01 where the pattern is of length i.
To obtain the recursive formula, we note that the A-B-S block patterns of this type are

represented by the A-B-S regular expression

S∗{AA∗SS∗, BB∗SS∗}∗{AA∗B,BB∗A}

and so the generating function is

G(x) =

∞∑
i=0

bix
i =

1

1− S
· 1

1−
(

A
1−A ·

S
1−S + B

1−B ·
S

1−S

) · (A2

1−A
+

B2

1−B

)
.

Setting A = B = S = x where x is an indeterminate, we have that ai represents as
stated above. Then doing some algebra the reader can confirm that

G(x) =
2x2

1− 2x− x2

and so

an − 2an−1 − an−2 =

0, if n = 0

0, if n = 1

2, if n = 2

0, if n ≥ 2

where the technique to get read off this recursion formula has already been discussed.
Then we get what we claimed about the ai’s earlier.

To get the closed form formula for the value of ai, do partial fractions on the generating
function:

∞∑
i=0

aix
i = G(x) =

2x2

1− 2x− x2
=

4x− 2

(x− (−1−
√

2))(x− (−1 +
√

2))
− 2

=
(3 + 2

√
2)/
√

2

x− (−1−
√

2)
+

(−3 + 2
√

2)/
√

2

x− (−1 +
√

2)
− 2

=
3 + 2

√
2√

2 + 2
· 1

1− (1/(−1−
√

2))x
+
−3 + 2

√
2√

2− 2
· 1

1− (1/(−1 +
√

2))x
− 2

=
3 + 2

√
2√

2 + 2

∞∑
i=0

(
1

−1−
√

2

)i
xi − 3− 2

√
2√

2− 2

∞∑
i=0

(
1

−1 +
√

2

)i
xi − 2

3 INTRODUCING SUP-35 INTO AMYLOIDS 9

Therefore, we explicitly get

an =

{
0, if n = 0
3+2
√
2√

2+2

(
1

−1−
√
2

)n
− 3−2

√
2√

2−2

(
1

−1+
√
2

)n
, if n ≥ 1

Now, rewrite the claimed formula for A(n, k) as

A(n, k) =
∑

∑k
i=0 φi=n

k∏
i=0

aφi +
n∑
q=1

bq
∑

∑k
i=0 φi=n−q

k∏
i=0

aφi

which is clearly equal to what was claimed.
Then the first term is all A-B-S patterns ending with a 1 and the second term is all

A-B-S patterns ending with a 0. This is a similar case analysis to what we did for the
Split-YFP-exclusive case.

Thus we have shown the formula holds.

3.3 Probability of at least m fluorescing locations

The probability of seeing at least m fluorescing pairs on an amyloid of length n is simply
the sum:

P≥(n,m) =
1

3n

bn/2c∑
k=m

A(n, k)

since the events k = m, . . . , bn/2c are independent.

3.4 Expected number of fluorescing locations

This is simply the sum:

E(n) =
1

3n

bn/2c∑
k=0

k · A(n, k)

by definition of expected value.

3.5 Expected percentage of proteins involved in fluorescence

This is the number:

R(n) =
2E(n)

n

Note that it is conjectured that

R(n) = 1/3

by simulation via the following Python script:

3 INTRODUCING SUP-35 INTO AMYLOIDS 10

#!/usr/bin/python

import itertools

import math

#The binomial coefficient nCk...

def binom(n, k):

if k > n or k < 0:

return 0

a = math.factorial(n)

b = math.factorial(k)

c = math.factorial(n - k)

return a / (b * c)

def a(n):

if n == 0:

return 0

x = math.sqrt(2)

result = ((3 + 2 * x) / (x + 2) * 1.0) * pow((1.0 / (-1.0 - x)), n) +

((2 * x - 3) / (x - 2) * 1.0) * pow((1.0 / (x - 1)), n)

return result

def b(n):

x = math.sqrt(2)

result = - (1.0 / (2 * x + 2)) * pow((1.0 / (-1 - x)), n) -

(1.0 / (2 - 2 * x)) * pow((1.0 / (x - 1)), n)

return result

def product(lst):

val = 1.0

for item in lst:

val *= item

return val

#This is the A(n,k) function I defined in my writeup...

def A(n, k):

result = 0.0

for q in xrange(0, n + 1 - 2 * k):

all_lists =

itertools.product(range(2, n - q - 2 * (k - 1)), repeat=k)

lists_of_sum_n = [lst for lst in all_lists if sum(lst) == n - q]

innerSum = 0.0

for lst in lists_of_sum_n:

a_lst = [a(phi_i) for phi_i in lst]

innerSum += product(a_lst)

result += b(q) * innerSum

3 INTRODUCING SUP-35 INTO AMYLOIDS 11

return result

#The expected number of fluorescing locations in a length n

#amyloid, according to formula I derived, is:

def expected_value(length):

result = 0.0

for i in xrange(0, length / 2 + 1):

result += i * A(length, i)

result /= pow(3, length)

return result

if __name__ == ’__main__’:

for i in xrange(2, 1000):

r = 2 * expected_value(i) / i

print "{}: {}".format(i, r)

which returns the following output:

6: 0.0146319158665

7: 0.0334443791234

8: 0.0600518213687

9: 0.0880624566038

10: 0.117326288337

11: 0.145103937818

12: 0.171026824552

13: 0.194258484153

14: 0.214795454455

15: 0.232595648807

16: 0.24787920548

17: 0.26086528489

18: 0.271832547986

19: 0.281041609429

20: 0.288746154913

21: 0.295172255476

22: 0.300521909795

23: 0.304969639296

24: 0.308665548904

25: 0.311736795713

26: 0.314290575502

and the following graph:

4 USING FRET IN AMYLOIDS OF YFP AND CFP 12

4 Using FRET in amyloids of YFP and CFP

We now analyze the case where full YFP (as a dimer) and CFP are well-mixed in a container
under ambient lighting that causes CFP to fluoresce. When CFP is bonded to YFP, the
fluorescence from CFP will cause YFP to fluoresce (FRET).

We are interested in measuring the total yellow fluorescence emanating from amyloids
of this kind. That is, the YFPs may fluoresce at a fixed level (call it Level 1) when it is
next to one and only one CFP, but it may also fluoresce twice as much (Level 2) if it is next
to two CFPs as in a YFP being sandwiched between two CFPs. We want to then sum over
the total yellow fluorescence of an amyloid rather than just the raw number of YFPs that
are caused to fluoresce.

Label YFP as Y and CFP as C. Then our block patterns are {Y,C}∗ and as with the
split-YFP exclusive case, extracting away the details we get patterns on the form (0∗01∗1)∗0∗

where we write a 1 whenever the full protein at that location causes the previous to fluoresce
OR is caused to fluoresce by the previous. We note that, unlike previous cases, once we
decide on the first protein in a 0-1 block pattern, the entire protein’s Y-C block pattern is
uniquely determined. Therefore, for each 0-1 block pattern there are 2 Y-C block patterns.

It is now remarked that there is a one-to-one correspondence between 1’s as appearing
in 0-1 block patterns as described above and the total yellow fluorescence emanating from
an amyloid of the kind. To be specific, the number of 1’s is equal to the total yellow
fluorescence (if we take Level 1 to be 1 and Level 2 to be 2 as numerical values for which
we sum up). For example...

{C, Y }∗: CY Y Y CY CY Y CC (1)

(0∗01∗1)∗0∗: 0 10 01 11 10 10 (2)

Yellow fluorescence: 0 10 01 20 11 00 (3)

and we note the second and third rows sum to the same number, as claimed.

5 USING FRET IN AMYLOIDS OF YFP, CFP, AND SUP35 13

4.1 Probability of k total yellow fluorescence in length n amyloid

The number of amyloids of length n with k total yellow fluorescence is:

A(n, k) = 2 ∗
(
n− 1

k

)
, k ∈ [0, n− 1]

and thus the probability of observing k total yellow fluorescence in a length n amyloid
is

P (n, k) =
2 ∗
(
n−1
k

)
2n

=

(
n−1
k

)
2n−1

, k ∈ [0, n− 1]

.
These are all easily seen from the remarks above.

4.2 Expected total yellow fluorescence

This is simply the sum:

E(n) =
n−1∑
k=0

k · P (n, k)

by definition of expected value.
Note that, by [2]:

E(n) :=
1

2n−1
·
n−1∑
k=0

k ·
(
n− 1

k

)
=

1

2n−1
· (n− 1)2n−2 =

n− 1

2

So that for very large n, we expect to see about as much yellow unit fluorescence as half
the length of the amyloid.

Note that the quantity:
R(n) := E(n)/n

goes to 1/2 as n goes to infinity.

5 Using FRET in amyloids of YFP, CFP, and Sup35

As with section 3, we will now analyze the case of introducing Sup35 to the system in
Section 4. That is, we have Sup35, YFP, and CFP well mixed and of equal concentrations
in a container under ambient lighting which causes CFP to fluoresce. The cyan fluorescence
of a CFP will cause an adjacent YFP to fluoresce yellow due to FRET, and this fluorescence
can be stacked so that a YFP sandwiched between two CFPs will fluoresce twice as much
as in the case where a YFP is next to only 1 CFP. The presence of Sup35 will block the
YFPs and CFPs from interacting under FRET.

Our block pattern becomes {C, Y, S}∗ where C represents CFP, Y represents YFP, and
S represents Sup35. The functional pattern is still (0∗01∗1)∗0∗ as before.

5 USING FRET IN AMYLOIDS OF YFP, CFP, AND SUP35 14

5.1 Probability of k total yellow fluorescence in length n amyloid

We remark that the number of amyloids of length n with k total yellow unit fluorescence
is:

A(n, k) =

n−k∑
q=0

bq

k∑
i=1

∑
∑i

j=1 φj=n−q
φj∈[2,n−q]∩Z

∑
∑i

j=1 ψj=k

ψj∈[1,φj]∩Z

i∏
j=1

aφj ,ψj

where

b0 = 1,

b1 = 3,

bi = 2bi−1 + bi−2 for i > 1,

and

an,y = 0, for n < y + 1

ay+1,y = 2

ay+2,y = 2

an,y = 2an−1,y + an−2,y, for n > y + 2

Explicitly,

bn = − 1

2 + 2
√

2
·
(

1

−1−
√

2

)n
− 1

2− 2
√

2
·
(

1

−1 +
√

2

)n
, n ≥ 0

which is the same bn in section 3, and

an,y =

0, if n ≤ y

−4+3
√
2

2+
√
2

(
1

−1−
√
2

)n−y
+ 4−3

√
2

2−
√
2

(
1

−1+
√
2

)n−y
, if n > y

Now let us show all of this...
As before in Section 3, the argument is to let bq represent the tail of zeros of length

q (which corresponds to the tail 0∗ in our functional regular expression), i the number of
blocks of the form (0∗01∗1) (as per our functional regular expression), φj is the length of the
jth block of the form (0∗01∗1) , ψj is the number of 1’s in the jth block of the form (0∗01∗1),
and ax,y is the total number of C−Y −S block patterns corresponding to a functional block
of the form (0∗01∗1) of length x and with y 1’s. Given these, the reader can see why the
formula must hold true. It is a similar construction to the formula of A(n, k) in Section 3.

Now we must justify the formulas themselves...
For bi, note that it represents the number of C-Y-S block patterns represented by a 0-1

block pattern of the form 000...0 where there are precisely i 0’s. To obtain the recursive
formula, we note that the C-Y-S block patterns of this type are represented by the C-Y-S
regular expression

S∗{CC∗SS∗, Y Y ∗SS∗}∗{CC∗, Y Y ∗, φ}

5 USING FRET IN AMYLOIDS OF YFP, CFP, AND SUP35 15

where φ is the empty set. Notice that this is the same as in Section 3 where bi represented
the number of A-B-S block patterns represented by a 0-1 block pattern of the form 000...0
where there are precisely i 0’s – the regular expression is equivalent by replacing C with A
and Y with B. Thus, this is why we get the same formula for bi here as we did in Section 3
and do not need to show any new details.

As for an,y, consider that it represents the number of C-Y-S patterns corresponding to
a 0-1 functional pattern of length n and with y 1’s, and looks like 00000...00011111...111.
We fix y = j. Then for each n ∈ N, a regular expression is as follows:

S∗{CC∗SS∗, Y Y ∗SS∗}∗{C(Y CY...), Y (CY C...)}
where for the last term the patterns C(YCY...) or Y(CYC...) are of length j + 1.
Our generating function is thus:

G(x) =
∞∑
i=0

ai,jx
i =

1

1− S
· 1

1−
(

C
1−C ·

S
1−S + Y

1−Y ·
S

1−S

) · 2xj+1

.
Setting A = B = S = x where x is an indeterminate, doing some algebra the reader can

confirm that

G(x) =
2xj+1(1− x)

1− 2x− x2
and so

an,j − 2an−1,j − an−2,j =

0, if n < j + 1

2, if n = j + 1

−2, if n = j + 2

0, if n > j + 2

where the technique to get read off this recursion formula has already been discussed.
Then we get what we claimed about the an,y’s earlier.

To get the explicit formula, note that we cannot do partial fractions on G(x) directly,
however we can notice that the values of an,y is simply a translation in the positive direction
along R of the values an,0 in its first index by y – the second index. That is, given that the
recursive formula is:

an,y = 0, for n < y + 1

ay+1,y = 2

ay+2,y = 2

an,y = 2an−1,y + an−2,y, for n > y + 2,

one should notice that y determines when the sequence formally starts to have non-zero
values and thus becomes non-trivial. With that in regard, an,y is essentially a class of
sequences in terms of y which all have essentially the same sequence of values for all n ∈ N,
modulo the zeroes at the beginning. Hence the notion of the second index y being a
”translation” factor. The translation factor rule is formally

an,j = an+i,j−i

5 USING FRET IN AMYLOIDS OF YFP, CFP, AND SUP35 16

With this in mind, consider that we have the generating function in terms of j which is the
second index. Setting j = 0 gives a generating function for an,0 which we can do partial
fractions on:

G(x) =
2x(1− x)

1− 2x− x2
= 2 +

6x− 2

1− 2x− x2
= 2 +

(4 + 3
√

2)/
√

2

(−1−
√

2)− x
− (4− 3

√
2)/
√

2

(−1 +
√

2)− x

= 2− 4 + 3
√

2

2 +
√

2
· 1

1− 1
−1−

√
2
x

+
4− 3

√
2

2−
√

2
· 1

1− 1
−1+

√
2
x

= 2− 4 + 3
√

2

2 +
√

2

∞∑
i=0

(
1

−1−
√

2

)i
xi +

4− 3
√

2

2−
√

2

∞∑
i=0

(
1

−1 +
√

2

)i
xi

Hence we get that

an,0 =

{
0, if n ≤ 0

−4+3
√
2

2+
√
2

(
1

−1−
√
2

)n
+ 4−3

√
2

2−
√
2

(
1

−1+
√
2

)n
, if n > 0

Hence by the translation rule,

an,y =

0, if n ≤ y

−4+3
√
2

2+
√
2

(
1

−1−
√
2

)n−y
+ 4−3

√
2

2−
√
2

(
1

−1+
√
2

)n−y
, if n > y

which is what was required.
A simulation of the quantity

R(n) := E(n)/n

is done using the following Python script:

#!/usr/bin/python

import itertools

import math

#The binomial coefficient nCk...

def binom(n, k):

if k > n or k < 0:

return 0

a = math.factorial(n)

b = math.factorial(k)

c = math.factorial(n - k)

return a / (b * c)

def a(n,y):

if n <= y:

return 0

x = math.sqrt(2)

result = - ((4 + 3 * x) / (x + 2) * 1.0) * pow((1.0/(-1.0-x)),n-y) -

5 USING FRET IN AMYLOIDS OF YFP, CFP, AND SUP35 17

((4 - 3 * x) / (2 - x) * 1.0) * pow((1.0 / (x - 1)), n - y)

return result

def b(n):

x = math.sqrt(2)

result = - (1.0 / (2 * x + 2)) * pow((1.0 / (-1 - x)), n) -

(1.0 / (2 - 2 * x)) * pow((1.0 / (x - 1)), n)

return result

def product(lst):

val = 1.0

for item in lst:

val *= item

return val

#This is the A(n,k) function I defined in my writeup...

def A(n, k):

result = 0.0

for q in xrange(0, n - k + 1):

innerSum = 0.0

for i in xrange(1, k + 1):

all_lists = itertools.product(xrange(1, n - q + 1), repeat=i)

lists_of_psi = [lst for lst in all_lists if sum(lst) == k]

all_lists = itertools.product(xrange(2, n - q + 1), repeat=i)

lists_of_sum_n=[lst for lst in all_lists if sum(lst)==n - q]

for lst in lists_of_sum_n:

for lst2 in lists_of_psi:

fin = zip(lst,lst2)

a_lst = [a(x,y) for x,y in fin]

innerSum += product(a_lst)

result += b(q) * innerSum

return result

#The expected number of fluorescing locations in a length n

#amyloid, according to formula I derived, is:

def expected_value(length):

result = 0.0

for i in xrange(0, length / 2 + 1):

result += i * A(length, i)

result /= pow(3.0, length)

return result

if __name__ == ’__main__’:

for i in xrange(1, 1000):

r = expected_value(i) / i

print "{}: {}".format(i, r)

REFERENCES 18

which yields the following results up to n = 15 before becoming computationally invi-
able:

2: 0.111111111111

3: 0.0987654320988

4: 0.154320987654

5: 0.141563786008

6: 0.177411979881

7: 0.168005748253

8: 0.192805974699

9: 0.185721462966

10: 0.203698623177

11: 0.198284219013

12: 0.211710236884

13: 0.207558366105

14: 0.217786065517

15: 0.214599388418

which when graphed appears as the following:

The data provided is qualitatively inconclusive to give an estimate of the steady-state
value of R(n).

References

[1] miniparser (https://math.stackexchange.com/users/99402/miniparser). Proof for num-
ber of ways to select k non-consecutive elements from n consecutive terms. Mathematics
Stack Exchange. URL:https://math.stackexchange.com/q/1347532 (version: 2015-07-
02).

[2] user63181. Sum of k
(
n
k

)
is n2n−1. Mathematics Stack Exchange.

URL:https://math.stackexchange.com/q/683740 (version: 2014-02-20).

