Lab Book Part 1

# Table of content

| Gene deletions for yeast strains construction   | 3  |
|-------------------------------------------------|----|
| Primers, Plasmids, Strains used in this Project | 3  |
| Deletion diary                                  | 15 |
| Week 1                                          |    |
| Week 2                                          |    |
| Week 3                                          |    |
| Week 4                                          |    |
| Week 5                                          |    |
| References                                      |    |

# Gene deletions for yeast strains construction

In order for our subpopulation system to work we had to construct two different yeast strains. One, which could not break down sucrose and consumes only glucose and fructose for ethanol production (for simplicity we call it strain A). The other strain unable to consume hexose sugars, but is able to consume ethanol and from that produce ethylene (let's call it strain B).

We used the sequential gene knockout method developed by Hegemann and Heick (2011). In the budding yeast we can knockout the unwanted gene in a single step. Because of the fact that homologous fragments can easily recombinate with high efficiency in yeast. We use this phenomenon to replace the target gene with linearized DNA which contains a selectable marker gene with homologous regions to those found in the target gene.

So, in strain A the following genes must be deleted: SUC2; AGT1; ADH2;. In strain B, on the other hand, we wanted to delete genes SUC2; AGT1; GAL2; HXT1-7. Because SUC2 and AGT1 genes have to be knocked-out in both strains we began with deleting these two from our starting yeast strain (CEN.PK 7D). CEN.PK are widely used *S. cerevisiae* strains in fermentation, that's why we chose it to as host strain.

Below we describe the process of strain construction week by week and provide sufficient information to ensure reproducibility.

## Primers, Plasmids, Strains used in this Project

All the primers used in this iGEM project were designed using *Benchling.org* software and synthesized by Mycrosynth. In tables 1 and 2 the primers used in this project are listed, in table 3 the plasmids used for gene deletion are listed, in table 4 the host strain as well as all strains and intermediates we need to construct are listed. Their status indicate whether we manage to get the strain or not.

| Number | Name      | Sequence(5'->3')                                          | Description        |
|--------|-----------|-----------------------------------------------------------|--------------------|
| 1.     | OL5'_SUC2 | CAAGCAAAACA<br>AAAAGCTTTTC<br>TTTTCACTAACG<br>TATATGCAGCT | SUC2 gene deletion |

Table 1. Primers for deletion of genes from strain A

|    |            | GAAGCTTCGTA<br>CGC                                                                  |                                                                                                                                               |
|----|------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | OL 3'_SUC2 | CTTTTGAAAAA<br>AATAAAAAAAGA<br>CAATAAGTTTT<br>ATAACCTGCAT<br>AGGCCACTAGT<br>GGATCTG | SUC2 gene deletion                                                                                                                            |
| 3. | A_SUC2     | GGTACGCCCGA<br>TGTTTGCCTATT<br>ACC                                                  | confirmation of SUC2<br>gene deletion                                                                                                         |
| 4. | D_SUC2     | CAAATTCCAGG<br>TAACTGGGGTC<br>GGGAG                                                 | confirmation of SUC2 gene deletion                                                                                                            |
| 5. | KanMx B-M  | GGATGTATGGG<br>CTAAATG                                                              | Primer for deletion<br>confirmation using<br>plasmid pUG6 and<br>pUG27 as disruption<br>cassete. Use with<br>primer A of the deleted<br>gene  |
| 6. | KanMx C-M  | CCTCGACATCA<br>TCTGCCC                                                              | Primer for deletion<br>confirmation using<br>plasmid pUG6 and<br>pUG 27 as disruption<br>cassete. Use with<br>primer D of the deleted<br>gene |

| 7.  | OL 5'_ADH2 | TACAATCAACT<br>ATCAACTATTA<br>ACTATATCGTA<br>ATACACACAGC<br>TGAAGCTTCGT<br>ACGC    | ADH2 gene deletion                    |
|-----|------------|------------------------------------------------------------------------------------|---------------------------------------|
| 8.  | OL 3'_ADH2 | ATAATGAAAAC<br>TATAAATCGTA<br>AAGACATAAGA<br>GATCCGCGCAT<br>AGGCCACTAGT<br>GGATCTG | ADH2 gene deletion                    |
| 9.  | A_ADH2     | GCCGGAACACC<br>GGGCATCTCC                                                          | confirmation of ADH2<br>gene deletion |
| 10. | D_ADH2     | CGAGGGAGACG<br>ATTCAGAGGAG<br>CAGG                                                 | confirmation of ADH2<br>gene deletion |

Table 2. Primers for deletion of genes from strain B

| Number | Name     | Sequence (5'->3')                                                                | Description        |
|--------|----------|----------------------------------------------------------------------------------|--------------------|
| 1.     | OL5 AGT1 | TACATAGAAGA<br>ACATCAAACAA<br>CTAAAAAAAATA<br>GTATAAT<br>CAGCTGAAGCT<br>TCGTACGC | AGT1 gene deletion |

| 2. | OL3 AGT1  | TTCCTTATTTCT<br>TCCAAAAAAAAA<br>AAAAACAACCC<br>TTTTACGCATA<br>GGCCACTAGTG<br>GATCTG | AGT1 gene deletion                                                                                                                      |
|----|-----------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 3. | A_AGT1    | CGTACCGGGCT<br>TGAGGGACATA<br>CAGA                                                  | confirmation of AGT1 gene deletion                                                                                                      |
| 4. | D_AGT1    | GCACCTGGTAC<br>TTGTGCCTGGA                                                          | confirmation of AGT1 gene deletion                                                                                                      |
| 5. | KanMx B-M | GGATGTATGGGC<br>TAAATG                                                              | Primer for deletion<br>confirmation using plasmid<br>pUG6 and pUG27 as<br>disruption cassete. Use with<br>primer A of the deleted gene  |
| 6. | KanMx C-M | CCTCGACATCAT<br>CTGCCC                                                              | Primer for deletion<br>confirmation using plasmid<br>pUG6 and pUG 27 as<br>disruption cassete. Use with<br>primer D of the deleted gene |
| 7. | OL5_HXT1  | AAGATATCATAA<br>TCGTCAACTAGT<br>TGATATACGTAA<br>AATCCAGCTGAA<br>GCTTCGTACGC         | HXT1 gene deletion                                                                                                                      |

| 8.  | OL3_HXT1  | TGTATAAGTCAT<br>TAAAATATGCAT<br>ATTGAGCTTGTT<br>TAGTGCATAGGC<br>CACTAGTGGATC<br>TG | HXT1 gene deletion                    |
|-----|-----------|------------------------------------------------------------------------------------|---------------------------------------|
| 9.  | HXT1-A    | CCGACAAGCCAG<br>GAAACTCCACCA<br>T                                                  | confirmation of HXT1 gene<br>deletion |
| 10. | HXT1-D    | CGGGCGTTTGAA<br>CTATGTATAGCG<br>CC                                                 | confirmation of HXT1 gene<br>deletion |
| 11. | OL5' HXT2 | ACAACAAATTAA<br>ATTACAAAAAGA<br>CTTATAAAGCAA<br>CATACAGCTGAA<br>GCTTCGTACGC        | HXT2 gene deletion                    |
| 12. | OL3' HXT2 | TTAGCCTTAAAA<br>AAATCAGTGCTA<br>GTTTAAGTATAA<br>TCTCGCATAGGC<br>CACTAGTGGATC<br>TG | HXT2 gene deletion                    |
| 13. | HXT2 A    | GGCCACGCAACT<br>GGCGTGGAC                                                          | confirmation of HXT2 gene deletion    |

| 14. | HXT2 D    | GTGTCAATACCT<br>CGAAGCAGCGTT<br>TCAAG                                              | confirmation of HXT2 gene deletion |
|-----|-----------|------------------------------------------------------------------------------------|------------------------------------|
| 15. | OL5' HXT3 | ATAGAATCACAA<br>ACAAAATTTACA<br>TCTGAGTTAAAC<br>AATC<br>CAGCTGAAGCTT<br>CGTACGC    | HXT3 gene deletion                 |
| 16. | OL3' HXT3 | TAAAATACACTA<br>TTATTCAGCACT<br>ACGGTTTAGCGT<br>GAAAGCATAGGC<br>CACTAGTGGATC<br>TG | HXT3 gene deletion                 |
| 17. | НХТЗ-А    | GGGGGTTGCATA<br>TAAATACAGGCG<br>C                                                  | confirmation of HXT3 gene deletion |
| 18. | HXT3-D    | CCTGTTCGGCTC<br>TCGCCGATGG                                                         | confirmation of HXT3 gene deletion |
| 19. | OL5' HXT4 | GTTTGGTTTTGA<br>AACACTTTTACA<br>ATAAAATCTGCC<br>AAAACAGCTGAA<br>GCTTCGTACGC        | HXT4 gene deletion                 |
| 20. | OL3' HXT4 | TTATTCCTTGAA<br>GGAAGTCTATAT                                                       | HXT4 gene deletion                 |

|     |           | -                                                                                  | 1                                     |
|-----|-----------|------------------------------------------------------------------------------------|---------------------------------------|
|     |           | TATTTAATTAAC<br>TGACGCATAGGC<br>CACTAGTGGATC<br>TG                                 |                                       |
| 21. | A_HXT4    | CAATTAGTGGTG<br>AAAAGCTTCAAC<br>ACTGGGG                                            | confirmation of HXT4 gene deletion    |
| 22. | D_HXT4    | GCCATCGTTAAG<br>TGGAGAATTCGG<br>CCTA                                               | confirmation of HXT4 gene<br>deletion |
| 23. | OL5' HXT5 | ATTTTTCTAGAA<br>AAAAGAATATAT<br>TAGAGGTAAAGA<br>AAGACAGCTGAA<br>GCTTCGTACGC        | HXT5 gene deletion                    |
| 24. | OL3' HXT5 | TGCAAGTATGCG<br>AAAATAGTTGAT<br>CCTACACTACAA<br>GAGAGCATAGGC<br>CACTAGTGGATC<br>TG | HXT5 gene deletion                    |
| 25. | HXT5-A    | GCTAGTCGAACG<br>GTTCTCCCTCTA<br>AG                                                 | confirmation of HXT5 gene deletion    |
| 26. | HXT5-D    | GGCGTAGCAACC<br>CTTTCTCCCC                                                         | confirmation of HXT5 gene deletion    |

| 27. | OL5' HXT6 | AAACACAAAAA<br>CAAAAAGTTTTT<br>TTAATTTTAATC<br>AAAAAACAGCTGA<br>AGCTTCGTACGC       | HXT6 gene deletion                 |
|-----|-----------|------------------------------------------------------------------------------------|------------------------------------|
| 28. | OL3' HXT6 | AATTAGAGCGTG<br>ATCATGAATTAA<br>TAAAAATGTTCG<br>CAAAGCATAGGC<br>CACTAGTGGATC<br>TG | HXT6 gene deletion                 |
| 29. | НХТ6 А    | TTCAGATGCCCT<br>CCGTGCCTTCAT<br>TG                                                 | confirmation of HXT6 gene deletion |
| 30. | HXT6 D    | GCGCCTACTTCG<br>CTTCTAGCGC                                                         | confirmation of HXT6 gene deletion |
| 31. | OL5' HXT7 | AAACACAAAAA<br>CAAAAAGTTTTT<br>TTAATTTTAATC<br>AAAAACAGCTGA<br>AGCTTCGTACGC        | HXT7 gene deletion                 |
| 32. | OL3' HXT7 | AATTAGAGCGTG<br>ATCATGAATTAA<br>TAAAAGTGTTCG<br>CAAAGCATAGGC<br>CACTAGTGGATC<br>TG | HXT7 gene deletion                 |

| 33. | НХТ7-А     | CCCCACCATCTT<br>TCGAGATCCCCT<br>G                                                  | confirmation of HXT7 gene deletion                                       |
|-----|------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 34. | HXT7-D     | GCGGTCGGTAAA<br>CAACTGACTTCT<br>TCCC                                               | confirmation of HXT7 gene deletion                                       |
| 35. | OL 5'_GAL2 | AACACAAGATT<br>AACATAATAAA<br>AAAAATAATTC<br>TTTCATACAGCT<br>GAAGCTTCGTA<br>CGC    | GAL2 gene deletion                                                       |
| 36. | OL 3'_GAL2 | AAAATTAAGAG<br>AGATGATGGAG<br>CGTCTCACTTCA<br>AACGCAGCATA<br>GGCCACTAGTG<br>GATCTG | GAL2 gene deletion                                                       |
| 37. | A_GAL2     | GCCCTTCCCATC<br>TCAAGATGGGG<br>AGC                                                 | confirmation of GAL2 gene deletion                                       |
| 38. | D_GAL2     | TCGGTGAACAA<br>AGGATGGCAGA<br>GCATG                                                | confirmation of GAL2 gene deletion                                       |
| 39. | KIURA3 B-M | CTAATAGCCAC<br>CTGCATTGG                                                           | Primer for deletion<br>confirmation using plasmid<br>pUG72 as disruption |

|     |            |                        | cassette. Use with primer A of the deleted gene                                                                                |
|-----|------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 40. | KIURA3 C-M | CAGACCGATCT<br>TCTACCC | Primer for deletion<br>confirmation using plasmid<br>pUG72 as disruption<br>cassette. Use with primer D<br>of the deleted gene |
| 41. | KILEU2 B-M | AGTTATCCTTG<br>GATTTGG | Primer for deletion<br>confirmation using plasmid<br>pUG73 as disruption<br>cassette. Use with primer A<br>of the deleted gene |
| 42  | KILEU2 C-M | ATCTCATGGAT<br>GATATC  | Primer for deletion<br>confirmation using plasmid<br>pUG73 as disruption<br>cassette. Use with primer D<br>of the deleted gene |

Table 3. Plasmids used in this project.

| Number | Name | Description                                                                                                                                                                                        | Reference | Euroscarf<br>catalog<br>Number |
|--------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------|
| 1.     | pUG6 | Plasmid contains a disruption<br>cassette which consists of a<br>selection marker KanMX and<br>LoxP recombination site. This<br>disruption cassette is used as a<br>template for PCR amplification | [1]       | P30114                         |

| 2. | pUG27 | Plasmid contains a disruption<br>cassette which consists of a<br>selection marker His+ and LoxP<br>recombination site. This<br>disruption cassette is used as a<br>template for PCR amplification | [1] | P30115 |
|----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|
| 3. | pUG72 | Plasmid contains a disruption<br>cassette which consists of a<br>selection marker Ura+ and LoxP<br>recombination site. This<br>disruption cassette is used as a<br>template for PCR amplification | [1] | P30117 |
| 4. | pUG73 | Plasmid contains a disruption<br>cassette which consists of a<br>selection marker Leu+ and LoxP<br>recombination site. This<br>disruption cassette is used as a<br>template for PCR amplification | [1] | P30118 |

Table 4. Strains.

| Number | Name       | Genotype                                               | Reference | Status   |
|--------|------------|--------------------------------------------------------|-----------|----------|
| 1.     | CEN.PK1-7D | MATa URA3<br>TRP1 LEU2<br>HIS3 SUC2                    |           |          |
| 2.     | CEN.PK1-2C | MATa ura3-52<br>trp1-289 leu2-<br>3,112 his3 Δ<br>SUC2 |           | in stock |

| 3. | CEN.PK1-<br>2C <b>∆</b> SUC2                                 | MATa ura3-52<br>trp1-289 leu2-<br>3,112 his3Δ<br>can1Δ::cas9-<br>natNT2<br>suc2Δ                                                                 | This work | couldn't<br>construct |
|----|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------|
| 4. | CEN.PK1-<br>2C <b>Δ</b> SUC2 <b>Δ</b> AG<br>T1               | MATa ura3-52<br>trp1-289 leu2-<br>3,112 his3Δ<br>can1Δ::cas9-<br>natNT2<br>suc2Δ agt1Δ                                                           | This work | couldn't<br>construct |
| 5. | CEN.PK1-<br>2C <b>∆</b> SUC2 <b>∆</b> AG<br>T1 <b>∆</b> GAL2 | MATa ura $3-52$<br>trp $1-289$ leu $2-3,112$ his $3\Delta$<br>can $1\Delta$ ::cas $9-$<br>natNT2<br>suc $2\Delta$ agt $1\Delta$<br>gal $2\Delta$ | This work | couldn't<br>construct |
| 6. | CEN.PK1-<br>2C <b>Δ</b> SUC2 <b>Δ</b> AG<br>T1 <b>Δ</b> ADH2 | MATa ura $3-52$<br>trp $1-289$ leu $2-3,112$ his $3\Delta$ can $1\Delta$ ::cas $9-$ natNT2<br>suc $2\Delta$ agt $1\Delta$ adh $2\Delta$          | This work | couldn't<br>construct |

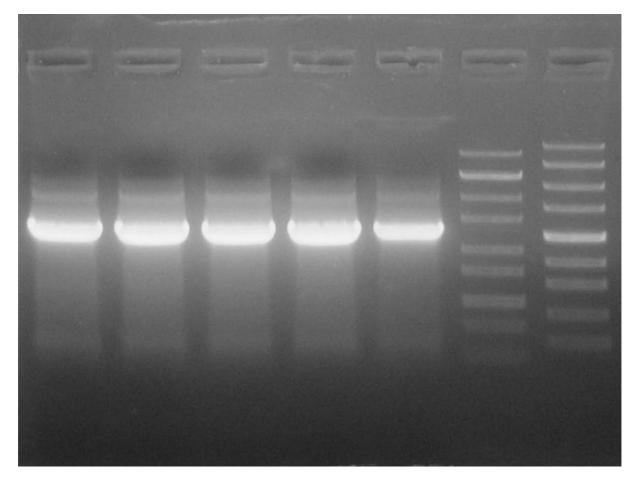
# Deletion diary

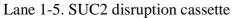
### Week 1

First of all, we wanted to remove SUC2 gene, because it must be knocked-out from both strains we needed to construct. We inoculated CEN.PK 7D yeast strain in 5 mL of YPD liquid media and put it to grow to 30°C 200 rpm shaker.

The disruption cassette for deletion of SUC2 gene was amplified using primers OL5'\_SUC2 and OL 3'\_SUC2 (number 1 and 2 in Table 1, respectively), and pUG6 plasmid as a template. In our project we have used DreamTaq Green PCR Master Mix (Thermo Scientific, Cat no: K1081), PCR reaction and Program were as follows:

PCR reaction mix


| Reagent name                             | Quantity (µL) |
|------------------------------------------|---------------|
| DreamTaq Green<br>PCR Master Mix<br>(2X) | 25            |
| OL5'_SUC2                                | 1             |
| OL 3'_SUC2                               | 1             |
| pUG6                                     | 1             |
| H <sub>2</sub> O                         | 22            |
| Total                                    | 50            |


Program

| Step             | Time       | Temperature<br>(°C) | # of cycles |
|------------------|------------|---------------------|-------------|
| Initial step     | 5 min      | 95                  |             |
| Denaturaturation | 1 min 30 s | 95                  | 35          |

| Anneling        | 30 s  | 58 |  |
|-----------------|-------|----|--|
| Extension       | 2 min | 72 |  |
| Final extension | 5 min | 72 |  |
| Hold            | x     | 15 |  |

The expected PCR product size was: 1.7 kb and after running the PCR product through 1% agarose gel for 30 min we got this result:





Lane 6. ZipRuler Express DNA ladder 1 (Cat. No: SM1373)

Lane 7. ZipRuler Express DNA ladder 2 (Cat. No: SM1373)

The PCR product size was as expected (1.7 kb), so we purified it from gel with FavorPrep GEL/PCR Purification Mini Kit (Cat. No: FAGCK001-1) according to manufacturer's protocol. This PCR product was then used on the next day for transformation.

On the next day we diluted the overnight CEN.PK 7D culture to OD600 of 0.2 in 25 mL of YPD and let it grow till the mid-log phase (OD600 = 0.7) at 30°C 200 rpm. Then we have transformed SUC2 disruption cassette into CEN.PK 2-1C strain using Li-Ac yeast transformation technique<sup>[1]</sup>. Transformed cells were plated on YPD+G418 plates and incubated at 30°C for 24 h. After 24 h, the cells were replica plated to the new YPD+G418 plates and incubated 24 h more at 30°C. Unfortunately, no colonies were formed.

Since we did not succeed with SUC2 deletions in the CEN.PK7D and this strain lacks free auxotrophic markers we opted to use a different and auxotrophic *S.cerevisiae* CEN.PK 2-1C strain, which would allow us to use disruption cassettes with amino acids markers.

So we inoculated CEN.PK 2-1C yeast strain in 5 mL of YPD liquid media and put it to grow overnight at 30°C 200 rpm.

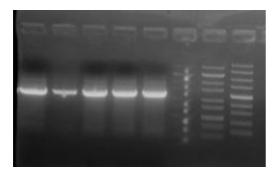
We repeated the transformation the following day with the same disruption cassette, but in a different strain. We diluted the overnight CEN.PK 2-1C culture to OD600 of 0.2 in 25 mL of YPD and let it grow till the mid-log phase (OD600 = 0.7) at 30°C 200 rpm. Then we have transformed SUC2 disruption cassette into CEN.PK 2-1C strain using Li-Ac yeast transformation technique<sup>[1]</sup>. Transformed cells were plated on YPD+G418 plates and incubated at 30°C for 24 h. After 24 h, the cells were replica plated to the new YPD+G418 plates and incubated 24 h more at 30°C. Unfortunately, there was no colony growth observed again.

#### Week 2

We inoculated CEN.PK 2-1C yeast strain in 5 mL of YPD liquid media and put it to grow to overnight at 30°C 200 rpm.

The disruption cassette for deletion of SUC2 gene was amplified using primers OL5'\_SUC2 and OL 3'\_SUC2 (number 1 and 2 in table 1, respectively), and pUG27 plasmid as a template. In our project we have used DreamTaq Green PCR Master Mix (Thermo Scientific, Cat no: K1081), PCR reaction and Program were as follows:

#### PCR reaction mix


| Reagent name   | Quantity (µL) |
|----------------|---------------|
| DreamTaq Green | 25            |
| PCR Master Mix |               |
| (2X)           |               |

| H <sub>2</sub> O<br>Total | 22<br>50 |
|---------------------------|----------|
| pUG27                     | 1        |
| OL 3'_SUC2                | 1        |
| OL5'_SUC2                 | 1        |

Program

| Step             | Time       | Temperature<br>(°C) | # of cycles |
|------------------|------------|---------------------|-------------|
| Initial step     | 5 min      | 95                  |             |
| Denaturaturation | 1 min 30 s | 95                  | 35          |
| Anneling         | 30 s       | 58                  |             |
| Extension        | 2 min      | 72                  |             |
| Final extension  | 5 min      | 72                  |             |
| Hold             | œ          | 15                  |             |

The expected PCR product size was: 1.6 bp and after running the PCR product through 1% agarose gel for 30 min 150V 300A we got this result:



Lane 1.-5. SUC2 disruption cassette (pUG27)

Lane 6. ZipRuler Express DNA ladder 1 (Cat. No: SM1373)

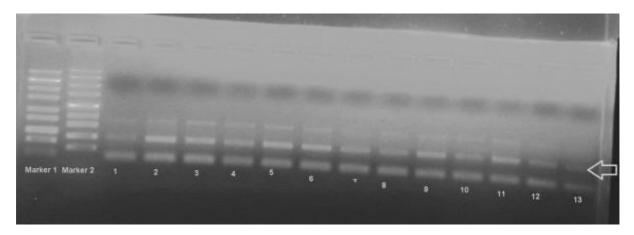
Lane 7. ZipRuler Express DNA ladder 2 (Cat. No: SM1373)

The PCR product size was as expected, so we purified it from gel with FavorPrep GEL/PCR Purification Mini Kit (Cat. No: FAGCK001-1) according to manufacturer's protocol. This PCR product was then used on the next day for transformation.

On the next day we diluted the overnight CEN.PK 2-1C culture to OD600 of 0.2 in 25 mL of YPD and let it grow till the mid-log phase (OD600 = 0.7) at 30°C 200 rpm. Then we have transformed SUC2 disruption cassette into CEN.PK 2-1C strain using Li-Ac yeast transformation technique<sup>[1]</sup>.Transformed cells were plated on -HIS/Glc plates and incubated at 30°C for 48 h. There were colonies formed, so thirteen of them were chosen for colony verification PCR.

The chosen colonies were lysed to extract the genomic DNA (gDNA) in 30  $\mu$ L of 20mM NaOH and kept in 100°C thermostat for 10 minutes, vortexed, cooled down on ice for 2 minutes and centrifuged at 13 000 rpm for 15 s. These samples' supernatants were used as a template for colony verification PCR.

PCR reaction mix


| Reagent name                             | Quantity (µL) |
|------------------------------------------|---------------|
| DreamTaq Green<br>PCR Master Mix<br>(2X) | 25            |
| A_SUC2                                   | 1             |
| KanMx B-M                                | 1             |
| gDNA                                     | 1             |
| H <sub>2</sub> O                         | 22            |
| Total                                    | 50            |

Program

| Step         | Time  | Temperature<br>(°C) | # of cycles |
|--------------|-------|---------------------|-------------|
| Initial step | 5 min | 95                  |             |

| Denaturaturation | 1 min 30 s | 95 | 35 |
|------------------|------------|----|----|
| Anneling         | 30 s       | 50 |    |
| Extension        | 2 min      | 72 |    |
| Final extension  | 7 min      | 72 |    |
| Hold             | x          | 15 |    |

The expected PCR product size was: 468 bp and after running the PCR product through 1% agarose gel for 30 min 150V 300A we got this result:



Lane 1. ZipRuler Express DNA ladder 1 (Cat. No: SM1373)

Lane 2. ZipRuler Express DNA ladder 2 (Cat. No: SM1373)

Lane 3.-15. PCR product from colonies

Fragments of appropriate lengths were observed, hence, the transformation worked.

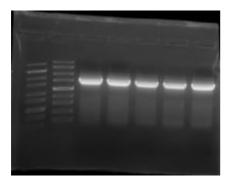
Glycerol stocks positive CEN.PK 2-1C  $\Delta$ SUC2 colonies (2, 3, 9, 11) were prepared according to protocol.

#### Week 3

We have moved on to the next deletion step, which is to remove the AGT1 gene, because it must be knocked-out from both strains we needed to construct. We inoculated CEN.PK 2-1C  $\Delta$ SUC2 yeast strain in 5 mL of YPD liquid media and put it to grow to 30°C 200 rpm.

The disruption cassette for deletion of AGT1 gene was amplified using primers OL5 AGT1 and OL3 AGT1 (number 1 and 2 in table 2, respectively), and pUG73 plasmid as a template. In our

project we have used DreamTaq Green PCR Master Mix (Thermo Scientific, Cat no: K1081), PCR reaction and Program were as follows:


PCR reaction mix

| Reagent name                             | Quantity (µL) |
|------------------------------------------|---------------|
| DreamTaq Green<br>PCR Master Mix<br>(2X) | 25            |
| OL5 AGT1                                 | 1             |
| OL3 AGT1                                 | 1             |
| pUG73                                    | 1             |
| H <sub>2</sub> O                         | 22            |
| Total                                    | 50            |

Program

| Step             | Time     | Temperature<br>(°C) | # of cycles |
|------------------|----------|---------------------|-------------|
| Initial step     | 5 min    | 95                  |             |
| Denaturaturation | 40 s     | 94                  | 25          |
| Anneling         | 1 min    | 58                  |             |
| Extension        | 1 min    | 68                  |             |
| Final extension  | 2 min    | 68                  |             |
| Hold             | $\infty$ | 15                  |             |

The expected PCR product size was: 2.5kb and after running the PCR product through 1% agarose gel for 30 min 150V 300A we got this result:



Lane 1. ZipRuler Express DNA ladder 1 (Cat. No: SM1373)

Lane 2. ZipRuler Express DNA ladder 2 (Cat. No: SM1373)

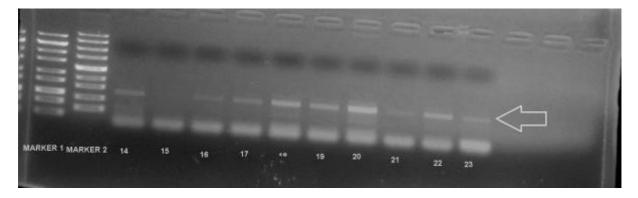
Lane 3.-7. AGT1 disruption cassette (pUG73)

The PCR product size was as expected, so we purified it from gel with FavorPrep GEL/PCR Purification Mini Kit (Cat. No: FAGCK001-1) according to manufacturer's protocol. This PCR product was then used on the next day for transformation.

On the next day we diluted the overnight CEN.PK 2-1C  $\Delta$ SUC2 culture to OD600 of 0.2 in 25 mL of YPD and let it grow till the mid-log phase (OD600 = 0.7) at 30°C 200 rpm. Then we have transformed AGT1 disruption cassette into CEN.PK 2-1C  $\Delta$ SUC2 strain using Li-Ac yeast transformation technique<sup>[1]</sup>. Transformed cells were plated on -LEU/Glc plates and incubated at 30°C for 48 h. Single colonies were observed.

The chosen colonies were lysed to extract the genomic DNA (gDNA) in 30  $\mu$ L of 20mM NaOH and kept in 100°C thermostat for 10 minutes, vortexed, cooled down on ice for 2 minutes and centrifuged at 13 000 rpm for 15 s. These samples' supernatants were used as a template for colony verification PCR.

| Reagent name                             | Quantity (µL) |
|------------------------------------------|---------------|
| DreamTaq Green<br>PCR Master Mix<br>(2X) | 25            |
| A_AGT1                                   | 1             |
| KILEU2 B-M                               | 1             |


PCR reaction mix

| gDNA             | 1  |
|------------------|----|
| H <sub>2</sub> O | 22 |
| Total            | 50 |

Program

| Step             | Time      | Temperature<br>(°C) | # of cycles |
|------------------|-----------|---------------------|-------------|
| Initial step     | 5 min     | 94                  |             |
| Denaturaturation | 1min 30 s | 94                  | 35          |
| Anneling         | 30 s      | 50                  |             |
| Extension        | 2 min     | 72                  |             |
| Final extension  | 7 min     | 72                  |             |
| Hold             | œ         | 15                  |             |

The expected PCR product size was: 568 bp and after running the PCR product through 1% agarose gel for 30 min 150V 300A we got this result:



Lane 1. ZipRuler Express DNA ladder 1 (Cat. No: SM1373)

Lane 2. ZipRuler Express DNA ladder 2 (Cat. No: SM1373)

Lane 3.-12. AGT1 gene + pUG73 plasmid

Fragments of appropriate lengths were observed which means that the transformation worked.

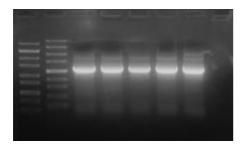
Glycerol stocks positive CEN.PK 2-1C ΔSUC2 ΔAGT1 colonies (18, 19, 20) were prepared.

### Week 4

We wanted to remove the GAL2 gene, because it must be knocked-out from strain B we needed to construct. We inoculated CEN.PK 2-1C  $\Delta$ SUC2  $\Delta$ AGT1 strain in 5 mL of YPD liquid media and put it to grow overnight at 30°C 200 rpm.

The disruption cassette for deletion of GAL2 gene was amplified using primers OL 5'\_GAL2 and OL 3'\_GAL2 (number 35 and 36 in table 2, respectively), and pUG72 plasmid as a template. In our project we have used DreamTaq Green PCR Master Mix (Thermo Scientific, Cat no: K1081), PCR reaction and Program were as follows:

PCR reaction mix


| Reagent name                             | Quantity (µL) |
|------------------------------------------|---------------|
| DreamTaq Green<br>PCR Master Mix<br>(2X) | 25            |
| OL5'_GAL2                                | 1             |
| OL 3'_GAL2                               | 1             |
| pUG72                                    | 1             |
| H <sub>2</sub> O                         | 22            |
| Total                                    | 50            |

#### Program

| Step             | Time  | Temperature<br>(°C) | # of cycles |
|------------------|-------|---------------------|-------------|
| Initial step     | 5 min | 95                  |             |
| Denaturaturation | 40 s  | 94                  | 25          |

| Anneling        | 1 min  | 58 |  |
|-----------------|--------|----|--|
| Extension       | 2 min  | 68 |  |
| Final extension | 15 min | 68 |  |
| Hold            | x      | 15 |  |

The expected PCR product size was: 1.7 kb and after running the PCR product through 1% agarose gel for 30 min 150V 300A we got this result:



Lane 1. ZipRuler Express DNA ladder 1 (Cat. No: SM1373)

Lane 2. ZipRuler Express DNA ladder 2 (Cat. No: SM1373)

Lane 3.-7. GAL2 disruption cassette

The PCR product size was as expected, so we purified it from gel with FavorPrep GEL/PCR Purification Mini Kit (Cat. No: FAGCK001-1) according to manufacturer's protocol. This PCR product was then used on the next day for transformation.

On the next day we diluted the overnight CEN.PK 2-1C  $\Delta$ SUC2  $\Delta$ AGT1 culture to OD600 of 0.2 in 25 mL of YPD and let it grow till the mid-log phase (OD600 = 0.7) at 30°C 200 rpm. Then we have transformed GAL2 disruption cassette into CEN.PK 2-1C  $\Delta$ SUC2  $\Delta$ AGT1 strain using Li-Ac yeast transformation technique <sup>[1]</sup>. Transformed cells were plated on -URA/Glc plates and incubated at 30°C for 48 h. Some colonies were observed.

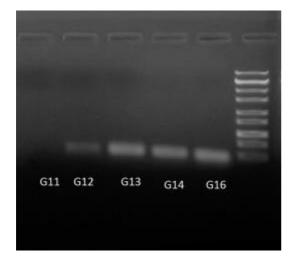
The chosen colonies were lysed to extract the genomic DNA (gDNA) in 30  $\mu$ L of 20mM NaOH and kept in 100°C thermostat for 10 minutes, vortexed, cooled down on ice for 2 minutes and centrifuged at 13 000 rpm for 15 s. These samples' supernatants were used as a template for colony verification PCR.

### PCR reaction mix

| Reagent name                             | Quantity (µL) |
|------------------------------------------|---------------|
| DreamTaq Green<br>PCR Master Mix<br>(2X) | 25            |
| A_GAL2                                   | 1             |
| KIURA B-M                                | 1             |
| gDNA                                     | 1             |
| H <sub>2</sub> O                         | 22            |
| Total                                    | 50            |

Program

| Step             | Time  | Temperature<br>(°C) | # of cycles |
|------------------|-------|---------------------|-------------|
| Initial step     | 5 min | 94                  |             |
| Denaturaturation | 20 s  | 94                  | 44          |
| Anneling         | 30 s  | 50                  |             |
| Extension        | 20 s  | 72                  |             |
| Final extension  | 7 min | 72                  |             |
| Hold             | x     | 15                  |             |


The expected PCR product size was: 444 bp and after running the PCR product through 1% agarose gel for 30 min 150V 300A we got this result:

|    |    | ,  |
|----|----|----|
|    |    |    |
|    |    |    |
| G3 | G4 | G5 |

Lane 1. ZipRuler Express DNA ladder 1 (Cat. No: SM1373)

Lane 2.-4. Colony PCR products

All colonies checked were false positive. So screening of new colonies was performed and colony validation PCR was repeated.



Lane 1.-5. Gcolony PCR products

Lane 6. ZipRuler Express DNA ladder 1 (Cat. No: SM1373)

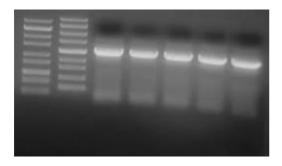
Colonies were false positive.

#### Week 5

The ADH2 gene has to be knocked out in the strain A in order to make it unable to produce acetaldehyde and CO2. We inoculated CEN.PK 2-1C  $\Delta$ SUC2  $\Delta$ AGT1 strain in 5 mL of YPD liquid media and put it to grow to 30°C 200 rpm.

The disruption cassette for deletion of ADH2 gene was amplified using primers OL 5'\_ADH2 and OL 3'\_ADH2 (number 7 and 8 in Table 2, respectively), and pUG72 plasmid as a template. In our

project we have used DreamTaq Green PCR Master Mix (Thermo Scientific, Cat no: K1081), PCR reaction and Program were as follows:


PCR reaction mix

| Reagent name                             | Quantity (µL) |
|------------------------------------------|---------------|
| DreamTaq Green<br>PCR Master Mix<br>(2X) | 25            |
| OL 5'_ADH2                               | 1             |
| OL 3'_ADH2                               | 1             |
| pUG72                                    | 1             |
| H <sub>2</sub> O                         | 22            |
| Total                                    | 50            |

Program

| Step             | Time       | Temperature<br>(°C) | # of cycles |
|------------------|------------|---------------------|-------------|
| Initial step     | 5 min      | 95                  |             |
| Denaturaturation | 1 min 30 s | 95                  | 35          |
| Anneling         | 1 min      | 58                  |             |
| Extension        | 2 min      | 68                  |             |
| Final extension  | 5 min      | 68                  |             |
| Hold             | $\infty$   | 15                  |             |

The expected PCR product size was: 1.7 kb and after running the PCR product through 1% agarose gel for 30 min 150V 300A we got this result:



Lane 1. ZipRuler Express DNA ladder 1 (Cat. No: SM1373)

Lane 2. ZipRuler Express DNA ladder 2 (Cat. No: SM1373)

Lane 3.-7. ADH2 disruption cassette

The PCR product size was as expected, so we purified it from gel with FavorPrep GEL/PCR Purification Mini Kit (Cat. No: FAGCK001-1) according to manufacturer's protocol. This PCR product was then used on the next day for transformation.

On the next day we diluted the overnight CEN.PK 2-1C  $\Delta$ SUC2  $\Delta$ AGT1 culture to OD600 of 0.2 in 25 mL of YPD and let it grow till the mid-log phase (OD600 = 0.7) at 30°C 200 rpm. Then we have transformed ADH2 disruption cassette into CEN.PK 2-1C  $\Delta$ SUC2  $\Delta$ AGT1 strain using Li-Ac yeast transformation technique<sup>[1]</sup>. Transformed cells were plated on -URA/Glc plates and incubated at 30°C for 48 h. Unfortunately, no colonies were formed. The transformation was repeated, but no colony growth was observed for the second time either.

Because 5 weeks were wasted and no strains that we need were constructed, we decided to search in a literature for the appropriate strains. Luckily, we found them in two different papers<sup>[2][3]</sup>. The authors were kind to send as those strains and we got them 3 weeks later.

In conclusion, thanks to *Prof.* Eckhard Boles' research group from Heinrich-Heine-Universität and *Prof.* Antonius J.A. van Maris' research group from the University of Delft we got the strains we need for our system to work and could start making biobrikes and characterizing them.

# References

[1] - Hegemann, J. H., & Heick, S. B. (2011). Delete and repeat: a comprehensive toolkit for sequential gene knockout in the budding yeast Saccharomyces cerevisiae. Strain engineering: methods and protocols, 189-206.

[2] - Wieczorke, R., Krampe, S., Weierstall, T., Freidel, K., Hollenberg, C. P., & Boles, E. (1999). Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS letters, 464(3), 123-128.

[3] - Marques, W. L., Mans, R., Marella, E. R., Cordeiro, R. L., van den Broek, M., Daran, J. M. G., ... & van Maris, A. J. (2017). Elimination of sucrose transport and hydrolysis in Saccharomyces cerevisiae: a platform strain for engineering sucrose metabolism. *FEMS yeast research*, *17*(1).