August –October 2016

Construction of in silico designed Switches and Triggers

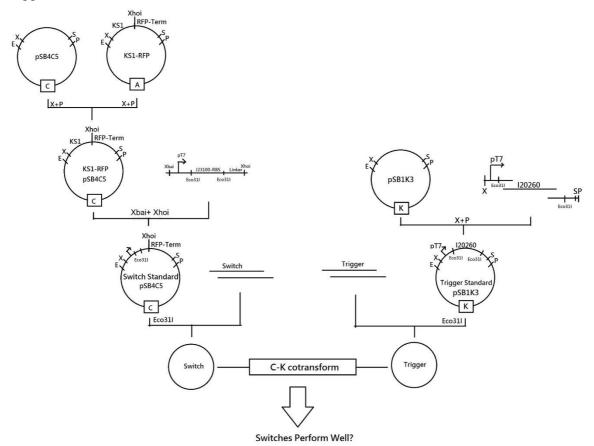
Construction of switch standard backbone:

- 1. KS1- RFP is first transferred from pSB1A2 to pSB4C5 using Xhoi and Psti.
- 2. "Xbai-pT7-Eco31I-J23100-RBS- Eco31I-Linker-Xbai" is constructed by overlapping 2 oligoes.
- 3. We intended to insert "Xbai-pT7-Eco31I-J23100-RBS- Eco31I-Linker-Xbai" into KS1-RFP- pSB4C5 to construct standard backbone. Experiment repeated 5 times but failed.
- 4. In the second experiment, one colony was found to be red. Sequencing result shown that deletion of "pT7-Eco31I" occurred.

- 5. A pair of Q5 mutagenesis primers were designed to insert pT7-Eco31I into that construct to construct standard backbone.
- 6. Mutagenesis was performed once and proceed to sequencing.
- 7. Repeat the procedures until correct sequencing result is obtained.

Construction of trigger standard backbone:

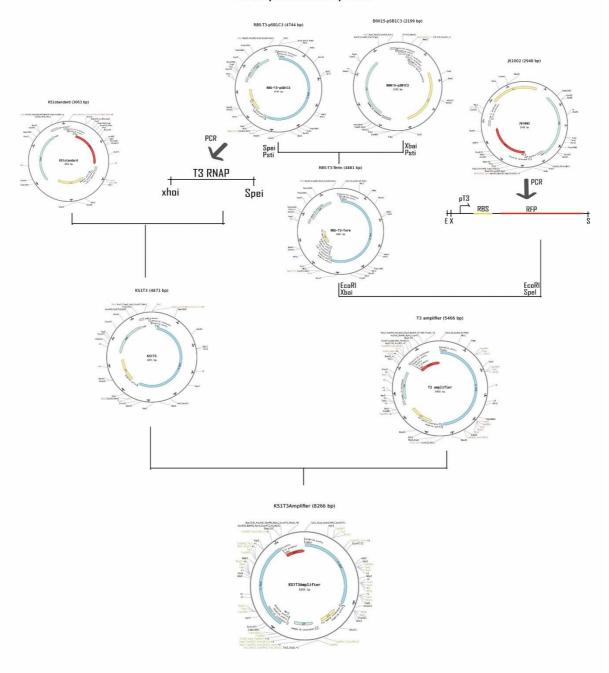
- 1. "Xbai-pT7- Eco31I-I20260-Eco31I-SpeI-PstI" is first made by PCR using I20260 (a GFP generating device) as template.
- "Xbai-pT7- Eco31I-I20260-Eco31I-SpeI-PstI" is inserted to pSB1K3 backbone to construct trigger standard backbone. Construct is confirmed by GFP colony and plasmid-PCR.


Construction of trigger construct:

- 1. Trigger is inserted into the standard backbone.
- 2. Sequencing result showed that trigger were correctly inserted. Construction of other 3 trigger will still carry on.

November 2016-February 2017

Workflow of Co-transformation of switch and trigger


After successful construction of switch and trigger, we test their specificity by cotransformation whereas the selection is made by C/K antibiotics. The ratio of [switch] and [trigger] for co-transformation is 1:2.

March2017-April2017

T3 amplification system

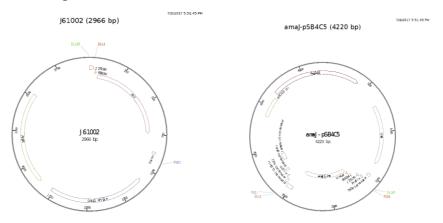
The T3 amplification system includes integration T3 RNAP into KS-1 standard plasmid and co-transformation with t3 amplifier, which is constructed by using iGEM distribution kit. Unfortunately, we cannot obtain the positive result. The workflow is summarised below:

T3 Amplification System

May 2017-June 2017

Characterization of chromoprotein

Cloning of plasmid


Transformation of plasmids using electroporation

- 1. Thaw a tube of competent cells (usually $100 \ \mu L$) on ice, and use as soon as possible.
- 2. Pipette 50 ng DNA to the solution surface of competent cells.
- 3. Put the tube on ice for 5 min.
- 4. Heat shock: Put the tube at 42 oC for 45 s to 2 min.
- 5. Put the tube in ice for 5 min.
- 6. Transfer the cells to a 1.5 mL or 2 mL microfuge tube
- 7. Add 1 ml LB broth or SOC medium.
- 8. Incubate the tube at 37 oC shaker for 45 90 min with shaking (~ 250 rpm).

9. Spread 3 dilution of cells (10-fold serial dilution) onto the pre-warmed agar plate (with suitable antibiotics), each in $50 - 100 \mu l$.

10. Incubate the agar plates upside down at 37 oC incubator overnight (~16 hrs).

11. Wrap the plates with parafilm and store at 4 oC for further use.

Culturing

Day 0: Prepare the medium according to protocol

Day 1: Pick single colony of C41 cells to 5ml LB solution with 1x antibiotics to grow starter. Day 2: 1% Inoculation in two 1L conical flask, each with 250 ml 2XYT solution 1x antibiotics overnight.

Protein extraction

- 1. Sin down 100ml cells in 50 ml falcon.
- 2. Wash cell pellet with 40 ml cool TE buffer.
- 3. Spin down cells, discard supernatant carefully.
- 4. Re-suspend cells with cold 15 ml Protein Lysis Buffer (PLB).
- 5. Sonicate on ice for 30 s 12.
- 6. Spin at 4°C at 13000 speed for 5 min
- 7. Transfer supernatants to new set of tubes.
- 8. Dialysis.

The protein purification was carried out using <u>*HiTrap Q HP Ion exchange column, Ge Health</u></u> <u><i>Care*</u> followed by <u>Hydrophobic interaction chromatography, Biored.</u></u>

Figure 1. Fluorescent proteins extracted from C41 after overnight expression

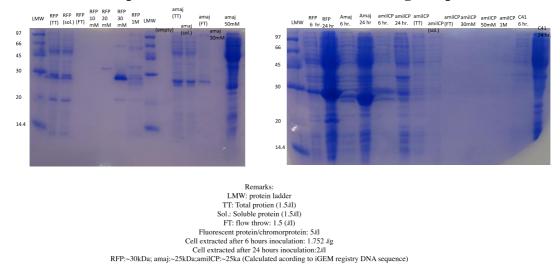


Figure 2. SDS–PAGE analysis of purification of chromo/fluorescent proteins by ionexchange chromatography

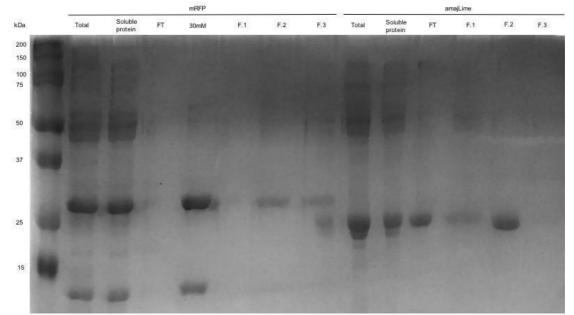


Figure 3. SDS–PAGE analysis of purification of amajLime (left) and mRFP (right)

proteins by ion-exchange chromatography and followed by hydrophobic-interaction chromatography HIC.

pH test

- 1. Diluted protein into buffers to $50 \ \mu g$ ranging in pH from 2-12 in 96-well plates.
- 2. Determine absorbance/ fluorescence by Plate reader

July 2017-August 2017

Fluorescent signal by switch and trigger co-transformation

Andrew

	Anu															
Swi tch	PB2-1		PB2-2		PB2-3		H5-1		H5-2		H5-3		N1-1		N1-2	
Trig ger	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+
801	8.4	11.	10.	15.	11.	147	10.	14.	10.	22.	13.		11.	65.	9.5	60.
	0.4 877	808	483	155	196	.51	532	775	359	523	029	15.	139	759	9.5 627	669
	93	808 99	403	155	39	.51	2	91	53	36	81	901	07	66	67	29
			9.0	11.												
	9.7	15.			13.	28. 916	17.	14.	15. 311	15.	13.	13.	13. 842	121 .51	14.	19.
	585 88	238 67	404 79	840 42	603 97	54	281 34	912 74	01	391 54	252 66	759 58	042 95	.51	038 78	799
																25
	11.	11.	12.	17.	10.	232	11.	11.	11.	18.	17.	11.	12.	40.	13.	43.
	511	868	561	874	884	.13	725	509	498	087	279	285	414	155	707	871
	09	13	05	35	43	75	02	6	16	03	75	59	35	71	5	78
	N1-		H7-		H7-		H7-		N9-		N9-		N9-3			
	3		1		2		3		1		2					
	-	+	-	+	-	+	-	+	-	+	-	+	-	+		
	12.	12.	11.	50.	12.	292	8.3	11.	22.	38.	11.	259	12.	11.		
	036	202	783	331	841	.71	302	496	023	268	643	.70	300	343		
	09	38	79	38	3	09	26	29	52	17	3	58	1	03		
	11.	11.	15.	28.	7.5	34.		13.	11.	18.	10.	218	8.1	12.		
	954	694	340	657	692	041	12.	308	941	477	287	.99	083	640		
	93	27	88	52	86	26	547	38	97	41	9	86	41	81		
	13.	9.6	16.	32.	12.	294	11.	12.	8.9	33.	10.	148	11.	8.7		
	303	357	277	405	824	.39	130	347	104	725	032	.42	656	132		
	96	43	81	64	15	48	22	96	78	04	64	37	29	62		

September 2017 Collaboration with HKUST and UCCKE