For the amplification of the promoter and the gene we transformed them into Escherichia coli JM-109 and Dh5-Alpha bacteria.

	Sample ID	Method	Competent cell type	Volume	Annotation
	P1	thermal shock	JM 109	150 μL	
	P2	thermal shock	JM 109	150 μL	
Dromotor	P3	thermal shock	JM 109	150 μL	no colony
Promoter	P4	electroporation	DH5-Alpha	200 μL	
	P5	electroporation	DH5-Alpha	200 μL	
	P6	electroporation	DH5-Alpha	200 μL	no colony
	G1	thermal shock	JM 109	150 μL	
	G2	thermal shock	JM 109	150 μL	
Cono	G3	thermal shock	JM 109	150 μL	
Gene	G4	electroporation	DH5-Alpha	200 μL	
	G5	electroporation	DH5-Alpha	200 μL	
	G6	electroporation	DH5-Alpha	200 μL	

We used both heat shock and electroporation in order to get safe results.

During thermal shock the reaction mixes were incubated at 37 °C for 10 min. After the incubation, we transformated E.coli JM109 competent cells with the samples of table (number) using thermal shock by the following protocol.

- On ice, to 50 μL of E. coli JM109 competent cell solution 5 μL of the reaction mix was confused in an Eppendorf-tube, then the solution was left on ice for 30 minutes. During that, SOC-containing soil was placed on ice as well.
- 2. After 30 minutes, thermal shock was accomplished at 42 °C for 60 seconds.
- 3. When the thermal shock was ready, the Eppendorf-tubes were placed back on ice, and right after it, 200 μ L of the SOC-containing soil was pipetted into each Eppendorf-tube.

The mixtures were incubated at 37 °C for 1 hour.

In the case of electroporation we used 0.1 cm tubes, and we applied 1.8 kV.

In 10 of 12 Petri-dishes containing LB and Ampicillin, the colonies have successfully developed and we were able to select individual ones and grow them in test tubes. We used a growth medium containing LB and Ampicillin as well, therefore only successfully transformated bacteria with were able to produce.

For the amplification of plasmids pMHE5, pMHE7 and pDSK5 we cultivated the bacteria containing them in mediums including antibiotic. In the case if bacteria containing pDSK5 they were grown in LB medium with Kanamycin and bacteria with pMHE5 and pMHE7 were cultivated in LB medium containing Streptomycin. With this method, only the certain plasmid-containing bacteria were able to grow, preventing being infected by other ones. From every Petri-dishes 16 colonies were separated and put in individual test tubes.

Petri-dishes	Test-tubes	Plasmid	Antibiotic
	pM5 01	pMHE5	Streptomycin
	pM5 02	pMHE5	Streptomycin
	pM5 03	pMHE5	Streptomycin
	pM5 04	pMHE5	Streptomycin
	pM5 05	pMHE5	Streptomycin
	pM5 06	pMHE5	Streptomycin
	pM5 07	pMHE5	Streptomycin
1	pM5 08	pMHE5	Streptomycin
1.	pM5 09	pMHE5	Streptomycin
	pM5 10	pMHE5	Streptomycin
	pM5 11	pMHE5	Streptomycin
	pM5 12	pMHE5	Streptomycin
	pM5 13	pMHE5	Streptomycin
	pM5 14	pMHE5	Streptomycin
	pM5 15	pMHE5	Streptomycin
	pM5 16	pMHE5	Streptomycin
	pM7 01	pMHE7	Streptomycin
	pM7 02	pMHE7	Streptomycin
	pM7 03	pMHE7	Streptomycin
	pM7 04	pMHE7	Streptomycin
	pM7 05	pMHE7	Streptomycin
	pM7 06	pMHE7	Streptomycin
	pM7 07	pMHE7	Streptomycin
	pM7 08	pMHE7	Streptomycin
2.	pM7 09	pMHE7	Streptomycin
	pM7 10	pMHE7	Streptomycin
	pM7 11	pMHE7	Streptomycin
	pM7 12	pMHE7	Streptomycin
	pM7 13	pMHE7	Streptomycin
	pM7 14	pMHE7	Streptomycin
	pM7 15	pMHE7	Streptomycin
	pM7 16	pMHE7	Streptomycin
	pD5 01	pDSK5	Kanamycin
	pD5 02	pDSK5	Kanamycin
	pD5 03	pDSK5	Kanamycin
	pD5 04	pDSK5	Kanamycin
	pD5 05	pDSK5	Kanamycin
	pD5 06	pDSK5	Kanamycin
	pD5 07	pDSK5	Kanamycin
2	pD5 08	pDSK5	Kanamycin
5.	pD5 09	pDSK5	Kanamycin
	pD5 10	pDSK5	Kanamycin
	pD5 11	pDSK5	Kanamycin
	pD5 12	pDSK5	Kanamycin
	pD5 13	pDSK5	Kanamycin
	pD5 14	pDSK5	Kanamycin
	pD5 15	pDSK5	Kanamycin
	pD5 16	pDSK5	Kanamycin

At this point we had 18 test tubes with the E coli containing the synthetized gene and 12 test tubes with the E coli containing the synthetized promoter. We vortexed the test tubes and then we united them in groups of three (Figure 1)into Eppendorf tubes and then centrifuged them thus one Eppendorf tube holds bacteria from 3 test tubes and then we discarded the supernatant.

For the miniprep we used the GeneJET Plasmid Miniprep Kit(Thermo Fisher Scientific, Catalog number: K0502) which contains 15 mL Resuspension Solution, 15 mL Lysis Solution, 20 mL Neutralization Solution, 20 mL Wash Solution, 0.15 mL RNase A and 4 mL Elution Buffer (10 mM Tris-HCl, pH 8.5) 50 pieces of GeneJET Spin Columns 50 pieces of Collection Tubes (2 mL). To prepare the buffer we had to add the RNase A solution to the Resuspension Solution and mix, add 35mL ethanol (96%) to the Wash Solution.

Before starting the protocol of the kit we had 6 Eppendorf tubes with the E.coli containing the synthetised gene and 4 with the E. coli containing the synthesised promoter. (Figure 1).

- 1. We resuspended the pelleted cells in 250 μL of the Resuspension Solution in 2mL Eppendorf tubes. We had the bacteria resuspended by vortexing until no cell clumps remained.
- 2. Then we added 250 μ L of the Lysis Solution and mixed it by inverting the tube 4-6 times until the solution became viscous and slightly clear.
- 3. We added 350 μ L of the Neutralization Solution and mixed it immediately by inverting the tube 4-6 times. The neutralized bacterial lysate became cloudy. We centrifuged them for 5 minutes to pellet cell debris and chromosomal DNA
- 4. We transfered the supernatant to the GeneJET spin columns by decanting. We centrifuged them for 1 minute, discard the flow-through and placed the column back into the same collection tube.
- 5. We added 500 μ L of the Wash Solution to the GeneJET spin column, centrifuged them for 1minute and discarded the flow-through and placed the column back into the same collection tube.
- 6. We repeated the wash procedure using 500 μ L of the Wash Solution, discard the flow-through and centrifuged for an additional 1 min to remove residual Wash Solution.
- 7. We transfered the GeneJET spin column into a fresh 1.5 mL Eppendorf tube then we added 50 μ L of the Elution Buffer(which we rewarmed to 70°C)to the center of GeneJET spin column membrane to elute the plasmid DNA.
- 8. We incubated them for 2 minute at room temperature and centrifuged them for 2 minute. Finally we discard the column and stored the purified plasmid DNAs at -20°C.

test tubes	After protocol Eppendorf tubes	content
G11		Plasmid cointaining
G12	G1	LDH gene +50µL
G13		Elution Buffer
G21		Plasmid cointaining
G22	G2	LDH gene +50µL
G23		Elution Buffer
G31		Plasmid cointaining
G32	G3	LDH gene +50µL
G33		Elution Buffer
G41 <mark>X</mark>		Plasmid cointaining
G42 <mark>X</mark>	G4 X	LDH gene +50µL
G43 <mark>X</mark>		Elution Buffer
G51		Plasmid cointaining
G52	G5	LDH gene +50µL
G53		Elution Buffer
G61		Plasmid cointaining
G62	G6	LDH gene +50µL
G63		Elution Buffer
P11		Plasmid cointaining
P12	P1	promoter +50µL
P13		Elution Buffer
P21		Plasmid cointaining
P22	P2	promoter +50µL
P23		Elution Buffer
P41		Plasmid cointaining
P42	P4	promoter +50µL
P43		Elution Buffer
P51		Plasmid cointaining
P52	Р5	promoter +50µL
P53		Elution Buffer

Miniprep

We obtained three plausible working plasmids: pMHE5, pMHE7 and pDSK5. We amplified them by letting the E. coli divide which had these plasmids inside them. We had 16 test tubes with bacterial solution for each plasmid. We vortexed the test tubes and then we united them in groups of four(Figure 1)into Eppendorf tubes and then centrifuged them thus one Eppendorf tube holds bacteria from 4 test tubes and then we discarded the supernatant.

For the miniprep we used the GeneJET Plasmid Miniprep Kit(Thermo Fisher Scientific, Catalog number: K0502) which contains 15 mL Resuspension Solution, 15 mL Lysis Solution, 20 mL Neutralization Solution, 20 mL Wash Solution, 0.15 mL RNase A and 4 mL Elution Buffer (10 mM Tris-HCl, pH 8.5) 50 pieces of GeneJET Spin Columns 50 pieces of Collection Tubes (2 mL). To prepare the buffer we had to add the RNase A solution to the Resuspension Solution and mix, add 35mL ethanol (96%) to the Wash Solution.

Before starting the protocol of the kit we had 4 Eppendorf tubes for each type of plasmid(a total of 12 Eppendorf tube).(Figure 1).

- 1. We resuspended the pelleted cells in 250 μL of the Resuspension Solution in 2mL Eppendorf tubes. We had the bacteria resuspended by vortexing until no cell clumps remained.
- 2. Then we added 250 μ L of the Lysis Solution and mixed it by inverting the tube 4-6 times until the solution became viscous and slightly clear.
- We added 350 μL of the Neutralization Solution and mixed it immediately by inverting the tube 4-6 times. The neutralized bacterial lysate became cloudy. We centrifuged them for 5 minutes to pellet cell debris and chromosomal DNA
- 4. We transfered the supernatant to the GeneJET spin columns by decanting. We centrifuged them for 1 minute, discard the flow-through and placed the column back into the same collection tube.
- 5. We added 500 μ L of the Wash Solution to the GeneJET spin column, centrifuged them for 1minute and discarded the flow-through and placed the column back into the same collection tube.
- 6. We repeated the wash procedure using 500 μL of the Wash Solution, discard the flow-through and centrifuged for an additional 1 min to remove residual Wash Solution.
- 7. We transferred the GeneJET spin column into a fresh 1.5 mL Eppendorf tube then we added 50 μL of the Elution Buffer(which we rewarmed to 70°C)to the center of GeneJET spin column membrane to elute the plasmid DNA.
- 8. We incubated them for 2 minute at room temperature and centrifuged them for 2 minute. Finally we discard the co stored the purified plasmid DNAs at -20°C

plasmids	test tubes(16pieces/plasmid)	before protocol Eppendorf tubes	after protocol Eppendorf tubes	content
PWH0	DO SWG			
PMHES	pM/5 02			
pMH05	pM3 03	the maint		pMHE5 plasmids from
pMH83	pM3 04			test tubes pM5 01-08
PWH25	PM5 05		our cound	cest copes bind of op
PWH65	PD SIVE			+100µL Elution Buffer
CHING	pM5 07	o-c civid		
DVIND.	20 SWd			
BMH0	5/15 02			
BHWG	DI SWS			
- Andrew -		21-6 SWd		MUES placmide from
o MHD	eANS 12			pining plasmids nom
			pMHE5 9-16	test tubes pM5 09-16
CHINE	phi 13			+100ul Elution Buffer
PUN45	pM5 14	DM5 12-16		ATACHT CITICUT DATIEL
pMH83	pMI5 15	ot-et elaid		
DMH23	pM5 16			
DWINE?	pM7 D1			
p/MHE7	ZO 2WG			
p/MHE7	20 7Mg	4-T JIMI		pMHE7 plasmids from
20HIM2	F0 2W4		-147.4 0	test tubes pM7 01 02
pMME7	pM7 05		out visid	control and another service
pMIHE7	p.M7 05			+100µL Elution Buffer
pMIHE7	50 2WG	o-c zivid		
pMMHE7	pM/7 05			
p/MHE7	pM17 02			
p/MHE7	pM/7 10	-MA7 0.10		
pMiHE7	pM7 11	and a stand		pMHE7 plasmids from
pMiHE7	pMI7 12		-M7 0.15	test tubes nM7 09-16
pMiHE7	pMI7 13		ot-c and	and and and and an
p/MHE7	pM/7 14	-M7 12 16		+100µL Elution Butter
pMiHE7	pMI7 15	ot.et und		
pMiHE7	pMI7 16			
plosks	p05 01			
plosks	p05 02			
plosks	p05 03	the cod		pDSK5 plasmids from
p03K3	p05 04		DDCK 1_2	test tubes pD5 01-08
ploses	p05 05		ort vood	
player	p05 06			+100µL Elution Buffer
p03KS	p05 07	o-c cod		
503K5	20 204			
5/2014	60 504			
p03K3	p05 10			
5X504	p05 11	zz-e end		pDSK5 plasmids from
POSKS	p05 12			tast tubas pDS 09-16
posks	p05 13		or-cond	
p03K3	p03 14	205 12-15		+100µL Elution Butter
p03K3	p05 15	or-or		
p03K3	p05 16			

To separate our gene and promoter from the plasmid they were synthesised into first we had to digest them with the right type of restriction enzyme.(figure 1)

Eppendorf tube	G1E1	G1E2	G1E3	G1E4	G1E5	G1E6	G1E7
Ncol	2 μL						
Green Buffer	2 μL						
G1	2 μL						
Nuclease-free water	14 µL						
Total	20 µL						
Eppendorf tube	P1E1	P1E2	P1E3	P1E4	P1E5	P1E6	P1E7
BgIII	2 μL						
Green Buffer	2 μL	2 µl	2 μL				
P1	2 μL	2μL					
Nuclease-free water	14 µL						
Total	20 µL						

Then we filled them into the pockets of two gels (figure 2) and run them with gel electrophoresis, we used the settings 110V with 400mA for 40 minutes. After the run we shined UV lights on the gels for just for 1 or 2 seconds in a dark room and quickly cut out the gel parts where the lines were furthest away from the pockets because those were our gene and promoter. (it is important to use UV light just for a short time not to damage the DNA)

1.	2.	3.	4.	5.	6.	7.	8.
ladder	G1E1	G1E2	G1E3	G1E4	G1E5	G1E6	G1E7
5	10	10	10	10	10	10	10
1.	2.	3.	4.	5.	6.	7.	8.
ladder	PE1E	P1E2	P1E3	P1E4	P1E5	P1E6	P1E7
5	10	10	10	10	10	10	10
	1. ladder 5 1. ladder 5	1. 2. ladder G1E1 5 10 1. 2. 1. 2. 1. 2. 1. 2. 1. 2. 1. 1. 2. 1. 1. 1. 2. 1. 3. 1. 3. 1. 3. 1. 3. 1. 3. 1. 3. 1. 3. 1.	1. 2. 3. ladder G1E1 G1E2 5 10 10 1. 2. 3. 1.adder PE1E P1E2 5 10 10	1. 2. 3. 4. ladder G1E1 G1E2 G1E3 5 10 10 10 1. 2. 3. 4. ladder PE1E P1E2 P1E3 5 10 10 10	1. 2. 3. 4. 5. ladder G1E1 G1E2 G1E3 G1E4 5 10 10 10 10 1. 2. 3. 4. 5. ladder PE1E P1E2 P1E3 P1E4 5 10 10 10 10	1. 2. 3. 4. 5. 6. ladder G1E1 G1E2 G1E3 G1E4 G1E5 5 10 10 10 10 10 1. 2. 3. 4. 5. 6. 1. 2. 3. 4. 5. 6. ladder PE1E P1E2 P1E3 P1E4 P1E5 5 10 10 10 10 10	1. 2. 3. 4. 5. 6. 7. ladder G1E1 G1E2 G1E3 G1E4 G1E5 G1E6 5 10 10 10 10 10 10 1. 2. 3. 4. 5. 6. 7. 1. 2. 3. 4. 5. 6. 7. ladder PE1E P1E2 P1E3 P1E4 P1E5 P1E6 5 10 10 10 10 10 10

Following this we used the GeneJET Gel Extraction Kit (Catalog number: K0692) on the sliced gel parts.

This kit contains:

- Binding Buffer (150 mL)
- Wash Buffer (concentrated) (45 mL)
- Elution Buffer (10 mM Tris-HCl, pH 8.5) (30 mL)
- GeneJET Purification Columns (preassembled with collection tubes) (250pieces)

Then we followed the protocol:

- 1. We placed the gel slices into a pre-weighed 1.5 mL tube and recorded the weight of the gel slices.
- 2. We added 1:1 volume of Binding Buffer to the gel slices (e.g. 100 μL of Binding Buffer for every 100 mg of agarose gel)
- 3. We incubated the gel mixture at 60 °C for 10 min or until the gel slice is completely dissolved. (Mixed the tube by inversion every few minutes to facilitate the melting process). We ensured that the gel is completely dissolved, vortexed the gel mixture briefly before loading on the columns.
- 4. This step was only necessary for the promoter because it was shorter than 500bp. We added 1 gel volume of 100% isopropanol to the solubilized gel solution (e.g. 100 μL of isopropanol should be added to 100 mg gel slice solubilized in 100 μL of Binding Buffer)and mixed thoroughly.
- 5. We transferred up to 800 μL of the solubilized gel solution to the GeneJET purification columns. We centrifuged for 1 min, then discarded the flow-through and placed the column back into the same collection tube.
- 6. We added 700 μL of Wash Buffer to the GeneJET purification columns then centrifuged them for 1 min, discarded the flow-through and placed the column back into the same collection tube.
- 7. We centrifuged the empty GeneJET purification columns for an additional 1 min to completely remove residual wash buffer.
- 8. We transferred the GeneJET purification columns into clean 1.5 mL microcentrifuge tubes. We added 25 μL of Elution Buffer to the center of each purification column membrane and centrifuged them for 1 min.
- 9. Finally we discarded the GeneJET purification columns and stored the purified DNA at -20 °C.

Tube name	mass (g)	Binding Buffer (µL)	Wash Buffer (µL)	Elution Buffer (µL)	pH buffer	isopropanol (µL)	Eppendorf tube after protocol	Final volume (µL)
G1E1	0,88	880	700	25	-	-	G1E1T	25
G1E2	0,57	570	700	25	-	-	G1E2T	25
G1E3	0,66	660	700	25	-	-	G1E3T	25
G1E4	0,64	640	700	25	-	-	G1E4T	25
G1E5	0,6	600	700	25	-	-	G1E5T	25
G1E6	0,7	700	700	25	-	-	G1E6T	25
P1E1	0,4	400	700	20	-	400	P1E1T	20
P1E2	0,54	540	700	20	-	540	P1E2T	20
P1E3	0,44	440	700	20	-	440	P1E3T	20
P1E4	0,39	390	700	20	-	390	P1E4T	20
P1E5	0,38	380	700	20	-	380	P1E5T	20
P1E6	0,29	290	700	20	-	290	P1E6T	20
P1E7	0,38	380	700	20	-	380	P1E7T	20

To separate our gene and promoter from the plasmid they were synthesised into first we had to digest them with the right type of restriction enzyme, this time we cut out the gene with Ncol and EcoRV too.(figure 1)

Eppendorf tube	G1G1	G1G2	
Ncol	1,5 µl	1,5 µl	
EcoRV	1,5 μL	1,5 μL	
Green Buffer	3 µl	3 µl	
G1	5 μL	5 μL	
Nuclease-free water	19µL	19 µL	
Total	30 µL	30 µL	
Eppendorf tube	P1G12	P1G34	P1G56
BgIII	2 μL	2 μL	2μL
Green Buffer	2 µl	2 µl	2 µl
P1	8 µl	8 µl	8 µl
Nuclease-free water	8 μL	8 μL	8 μL
Total	20 µl	20 µl	20µl

Then we filled them into the pockets of two gels (figure 2) and run them with gel electrophoresis, we used the settings 110V with 400mA for 40 minutes. After the run we shined UV lights on the gels for just for 1 or 2 seconds in a dark room and quickly cut out the gel parts where the lines were furthest away from the pockets because those were our gene and promoter. (it is important to use UV light just for a short time not to damage the DNA)

gel pocket	1.	2.	3.	4.	5.	6.	7.	8.
content	ladder	G1G1	G1G1	G1G1	G1G2	G1G2	G1G2	-
volume (µL)	5	10	10	10	10	10	10	-
gel pocket	1.	2.	3.	4.	5.	6.	7.	8.
content	ladder	P1G12	P1G12	P1G34	P1G34	P1G56	P1G56	-
volume (µL)	5	10	10	10	10	10	10	-

Following this we used the GeneJET Gel Extraction Kit (Catalog number: K0692) on the sliced gel parts.

This kit contains:

- Binding Buffer (150 mL)
- Wash Buffer (concentrated) (45 mL)
- Elution Buffer (10 mM Tris-HCl, pH 8.5) (30 mL)
- GeneJET Purification Columns (preassembled with collection tubes) (250pieces)

Then we followed the protocol:

1. We placed the gel slices into a pre-weighed 1.5 mL tube and recorded the weight of the gel slices.

- 2. We added 1:1 volume of Binding Buffer to the gel slices (e.g. 100 μL of Binding Buffer for every 100 mg of agarose gel)
- 3. We incubated the gel mixture at 60 °C for 10 min or until the gel slice is completely dissolved. (Mixed the tube by inversion every few minutes to facilitate the melting process). We ensured that the gel is completely dissolved, vortexed the gel mixture briefly before loading on the columns.
- 4. This step was only necessary for the promoter because it was shorter than 500bp. We added 1 gel volume of 100% isopropanol to the solubilized gel solution (e.g. 100 μL of isopropanol should be added to 100 mg gel slice solubilized in 100 μL of Binding Buffer)and mixed thoroughly.
- 5. We transferred up to 800 μL of the solubilized gel solution to the GeneJET purification columns. We centrifuged for 1 min, then discarded the flow-through and placed the column back into the same collection tube.
- 6. We added 700 μL of Wash Buffer to the GeneJET purification columns then centrifuged them for 1 min, discarded the flow-through and placed the column back into the same collection tube.
- 7. We centrifuged the empty GeneJET purification columns for an additional 1 min to completely remove residual wash buffer.
- 8. We transferred the GeneJET purification columns into clean 1.5 mL microcentrifuge tubes. We added 20 μL of Elution Buffer to the center of each purification column membrane and centrifuged them for 1 min.
- 9. Finally we discarded the GeneJET purification columns and stored the purified DNA at -20 °C.

Eppendorf tube	mass (g)	Binding Buffer (μL)	Wash Buffer (µL)	Elution Buffer (µL)	isopropanol	Eppendorf tube after protocol	final volume (µL)	
G1G1	0,30	300	700	20	-	C1C1T	40	
G1G2	0,26	260	700	20	-	01011	40	
G1G3	0,24	240	700	20	-	61621	40	
G1G4	0,22	220	700	20	-	01021		
G1G5	0,20	200	700	20	-	C1C2T	40	
G1G6	0,32	320	700	20	-	01031		
P1G1	0,93	930	700	40	930	P1G1T	40	
P1G2	0,80	800	700	40	800	P1G2T	40	
P1G3	0,92	920	700	40	920	P1G3T	40	

To provide place for the promoter in the pMHE5 and pMHE7 plasmids first we digested them with BgIII.(figure 1)

Eppendorf tube	M5RB1	M5RB2	M5RB3	M7RB1	M7RB2	M7RB3
sample	pMHE5	pMHE5	pMHE5	pMHE7	pMHE7	pMHE7
sample volume	4 µL	4 μL	4 µL	4 μL	4 µL	4 μL
Green Buffer	2 μL					
BgIII	2 μL	2μL	2 μL	2 μL	2 μL	2 μL
nuclease-free water	12 µL					
Total	20 µL					

Then we separated the DNA fragments from all the other parts of this solution with gel electrophoresis. We filled them into the gel pockets(figure 2) and run them on the settings 110V with 400mA for 40 minutes. After the run we shined UV lights on the gels for just for 1 or 2 seconds in a dark room and quickly cut out the gel parts where the lines were. (it is important to use UV light just for a short time not to damage the DNA)

gel pocket	1.	2.	3.	4.	5.	6.	7.	8.
content	ladder	M5RB1	M5RB1	M5RB2	M5RB2	M5RB3	M5RB3	-
volume (µL)	5	10	10	10	10	10	10	-
gel pocket	1.	2.	3.	4.	5.	6.	7.	8.
content	ladder	M7RB1	M7RB1	M7RB2	M7RB2	M7RB3	M7RB3	-
volume (µL)	5	10	10	10	10	10	10	-

Following this we used the GeneJET Gel Extraction Kit (Catalog number: K0692) on the sliced gel parts.

This kit contains:

- Binding Buffer (150 mL)
- Wash Buffer (concentrated) (45 mL)
- Elution Buffer (10 mM Tris-HCl, pH 8.5) (30 mL)
- GeneJET Purification Columns (preassembled with collection tubes) (250pieces)

Then we followed the protocol:

- 1. We placed the gel slices into a pre-weighed 1.5 mL tube and recorded the weight of the gel slices.
- 2. We added 1:1 volume of Binding Buffer to the gel slices (e.g. 100 μL of Binding Buffer for every 100 mg of agarose gel)
- 3. We incubated the gel mixture at 60 °C for 10 min or until the gel slice is completely dissolved. (Mixed the tube by inversion every few minutes to facilitate the melting process). We ensured that the gel is completely dissolved, vortexed the gel mixture briefly before loading on the columns.
- 4. We transferred up to 800 μL of the solubilized gel solution to the GeneJET purification columns. We centrifuged for 1 min, then discarded the flow-through and placed the column back into the same collection tube.
- 5. We added 700 μL of Wash Buffer to the GeneJET purification columns then centrifuged them for 1 min, discarded the flow-through and placed the column back into the same collection tube.
- 6. We centrifuged the empty GeneJET purification columns for an additional 1 min to completely remove residual wash buffer.
- 7. We transferred the GeneJET purification columns into clean 1.5 mL microcentrifuge tubes. We added 20 μL of Elution Buffer to the center of each purification column membrane and centrifuged them for 1 min.
- 8. Finally we discarded the GeneJET purification columns and stored the purified DNA at -20 °C.

Tube	mass (g)	Binding Buffer	Wash Buffer	Elution Buffer	pH buffer isopropanol		Eppendorf tube after	Final volume
name		(µL)	(µL)	(µL)		(µL)	protocol	(µL)
M5E1	0,49	490	700	20	-	-	MEETT	40
M5E2	0,28	280	700	20	-	-	IVIJETI	
M5E3	0,39	390	700	20	-	-	MEEDT	40
M5E4	0,45	450	700	20	-	-	IVIJEZT	
M5E5	0,38	380	700	20	-	-	MEEST	40
M5E6	0,36	360	700	20	-	-	IVIJEJI	40
M7E1	0,39	390	700	20	-	-	N/7F1T	40
M7E2	0,38	380	700	20	-	-		
M7E3	0,43	430	700	20	-	-	MITEOT	40
M7E4	0,33	330	700	20	-	-		
M7E5	0,36	360	700	20	-	-	M7F2T	40
M7E6	0,38	380	700	20	-	-	IVIZEST	40

Protocol for ligation of the LDH gene and the plasmid

Plasmid-LDH ligation

The ligation of the lactate-dehydrogenase (LDH) gene and the pMHE5 / pMHE7 plasmid was carried out with the Thermo Scientific T4 DNA ligase. Plasmid DNA concentration in the samples are shown by the table.

Sample ID	DNA concentration (ng/µL)							
G1G1T	11.65							
G1G2T	6.54							
G1G3T	11.06							
P1G1T	5.76							
P1G2T	3.37							
P1G3T	3.92							
M5E1T	4.49							
M5E2T	3.55							
M5E3T	2.57							
M7E1T	2.24							
M7E2T	2.03							
M7E3T	2.46							

Table

Since we knew the exact DNA content of the samples, we could carry out the ligation. The ligation mixture was composed as shown by table.

	l. reaction mixture	ll. reaction mixture	III. reaction mixture	IV.reaction mixture	
Plasmid sample	M5E1T	M5E2T	M7E1T	M7E3T	
Plasmid sample volume (µL)	10	13	20	20	
Gene sample	G1G3T	G1G2T	G1G1T	G1G3T	
Gene sample volume (µL)	3	4	2	2	
Buffer volume (μL)	4	4	4	4	
Thermo Scientific T4 DNA ligase volume (μL)	1	1	1	1	
Nuclease-free water volume (μL)	2	-	-	-	
Total volume (μL)	20	22	27	27	

Table

The reaction mixtures were incubated at 37 °C for 10 minutes.

After the incubation, the putative construct of the ligated plasmid and gene were transferred into Escherichia coli JM109 competent cells with thermal shock by the following protocol:

 On ice, to 50 μL of E. coli JM109 competent cell solution 5 μL of the reaction mix was confused in an Eppendorftube, then the solution was left on ice for 30 minutes.

During that, SOC-containing soil was placed on ice as well.

- 2. After 30 minutes, thermal shock was accomplished at 42 °C for 60 seconds.
- 3. When the thermal shock was ready, the Eppendorf-tubes were placed back on ice, and right after it, 200 μL of the SOC-containing soil was pipetted into each Eppendorf-tube.
- 4. The mixtures were incubated at 37 °C for 1 hour.

Scaling up plasmid DNA

Under Laminar Air-Flow 200 µL of each samples was placed on Petri-dishes containing LB and Streptomycin, and as a control, 50 µL of each samples was placed on Petri-dishes containing only LB. The samples were incubated at 37 °C for a day. At the end of the incubation time, the result was 5 colonies containing the putative pMHE5-LDH construct, and 11 colonies containing the putative pMHE7-LDH construct, both on Petri-dishes containing LB and Streptomycin. Each colony on the LB and Streptomycin containing Petri-dishes was transferred into test tubes containing 2 mL of LB and Streptomycin. These bacterial cultures were incubated at 37 °C for 2 days.

DNA purification

Plasmid DNAs were purified using the Thermo Scientific GeneJET Plasmid Miniprep Kit. 1. We resuspended the pelleted cells in 250 μ L of the Resuspension Solution in 2 mL Eppendorf tubes. Bacteria were resuspended by vortexing until no cell clumps remained.

2. 250 μ L of the Lysis Solution was added and mixed by inverting the tube 4-6 times until the solution became viscous and slightly clear.

3. 350 μ L of the Neutralization Solution was added and mixed immediately by inverting the tube 4-6 times. The neutralized bacterial lysate became cloudy. They were centrifuged for 5 minutes to pellet cell debris and chromosomal DNA.

4. We transferred the supernatant to the GeneJET spin columns by decanting. We centrifuged them for 1 minute to discard the flow-through and placed the column back into the same collection tube.

5. We added 500 μ L of the Wash Solution to the GeneJET spin column then centrifuged them for 60 seconds, discarded the flow-through and placed the column back into the same collection tube.

6. We repeated the wash procedure using 500 μ L of the Wash Solution, discarded the flow-through and centrifuged for an additional 60 seconds to remove residual Wash Solution.

7. We transferred the GeneJET spin column into a fresh 1.5 mL Eppendorf tube then we added 50 μ L of the Elution Buffer (which was rewarmed to 70°C) to the center of GeneJET spin column membrane to elute the plasmid DNA.

8. We incubated them for 2 minute at room temperature and centrifuged them for 2 minutes. Finally we discarded the column and stored the purified plasmid DNAs at -20°C.

Control of the putative pMHE5-LDH and pMHE7-LDH construct

We had to make sure that the ligation of the pMHE5 / pMHE7 and the LDH was successful. Therefore, we carried out a gel electrophoresis analysis. As figure shows, the (here the exact number) samples contained an approximately 1000 base pairs long DNA sequence, which must be due to the successfully inserted LDH sequence, so the ligation of the pMHE5 / pMHE7 and the LDH was proven successful.

Restriction of the purified plasmids with BglII

The purified pMHE5-LDH and pMHE7-LDH constructs were restricted with the Thermo Scientific FastDigest BgIII restriction kit. The composition of the reaction mixes are shown by table.

BglII volume (μL)							
Buffer volume (μL)							
Volume of plasmid sample (µL)							
Volume of nuclease-free water (μ L)							
Total volume (μL)							

Table

Ligation of the pMHE5-LDH / pMHE7-LDH constructs and the putative promoter

	I. RM	II. RM	III. RM	IV. RM	V. RM	VI. RM	VII. RM	VIII. RM	IX. RM	X. RM
Plasmid sample	S5.1M	S5.1M	S5.2M	S5.3M	S5.4M	S5.5M	S7.1M	S7.2M	S7.6M	S7.7
Plasmid sample volume (µL)	10	10	10	10	10	10	10	10	10	10
Promoter sample	P1G1T	P1G1T	P1G1T	P1G1T	P1G1T	P1G1T	P1G3T	P1G3T	P1G3T	P1G3T
Promoter sample volume (µL)	5	5	5	5	5	5	7	7	7	7
Buffer volume (μL)	5	5	5	5	5	5	5	5	5	5
T4 DNA ligase volume (μL)	2	2	2	2	2	2	2	2	2	2
Total volume (μL)	22	22	22	22	22	22	24	24	24	24
Sample ID	LP1	LP2	LP3	LP4	LP5	LP6	LP7	LP8	LP9	LP10

The pMHE5-LDH (S5.1M-S5.5M) / pMHE7-LDH (S7.1M-S7.7M) constructs and the promoter were ligated using the Thermo Scientific T4 DNA Ligase kit. The composition of the reaction mixtures are shown by table.

RM: abbrev. of Reaction Mixture

Table

The reaction mixes were incubated at 37 °C for 10 min. After the incubation, we transformated

- E.coli JM109 competent cells with the samples of table (number) using thermal shock by the following protocol.
 - On ice, to 50 μL of E. coli JM109 competent cell solution 5 μL of the reaction mix was confused in an Eppendorftube, then the solution was left on ice for 30 minutes. During that, SOC-containing soil was placed on ice as well.
 - After 30 minutes, thermal shock was accomplished at 42 °C for 60 seconds.
 - When the thermal shock was ready, the Eppendorf-tubes were placed back on ice, and right after it, 200 μL of the SOC-containing soil was pipetted into each Eppendorf-tube.
 - 4. The mixtures were incubated at 37 °C for 1 hour.

Under Laminar Air-Flow 200 µL of each samples was placed on Petri-dishes containing LB and Streptomycin, and as a control, 50 µL of each samples was placed on Petri-dishes containing only LB. The samples were incubated at 37 °C for a day. At the end of the incubation time, the result was 5 colonies containing the putative pMHE5-LDH-promoter construct, and 11 colonies containing the putative pMHE7-LDH-promoter construct, both on Petri-dishes containing LB and Streptomycin. Each colony on the LB and Streptomycin containing Petri-dishes was transferred into test tubes containing 2 mL of LB and Streptomycin. These bacterial cultures were incubated at 37 °C for 2 days. After 2 days there were colonies on the Petri-dishes containing LB and Streptomycin:

Sample ID	LP1	LP2	LP3	LP4	LP5	LP6	LP7	LP8	LP9	LP10
Number of colonies	1	1?	2	7	2	-	-	-	1	4

Table

The colonies were transferred into test tubes containing LB and Streptomycin.