# Protocol for measuring ammonia in air

### A. Sampling ammonia in air

#### Materials

- 1. Aquarium air pump (Boyu Aquarium Air Pump 2 Output with Air Flow Controller).
- 2. Silicone tubing (2 nos.), 15 cm each, Inner diameter: 0.25 inch
- 3. 15 ml Falcon tubes, as required.
- 4. Test tube stand.
- 5. Aluminium foil.
- 6. Deionized water.

#### Procedure

- 1. Place the air pump in the area where sampling is to be carried out.
- 2. Attach silicone tubings to the outlets in the air pump.
- 3. Add 5 ml deionized water to two 15 ml Falcon tubes.
- 4. Insert the silicone tubings in the Falcon tubes, such that they dip inside the water.
- 5. Set the air flow to 'low' using the controller present in the air pump
- 6. Cover the mouth of the tubes with aluminium foil to avoid loss of ammonia.
- 7. Switch on the air pump.
- 8. At the end of 15 min, remove one tube and cap it tightly. Label appropriately.
- 9. At the end of 30 min, remove the other tube and cap it tightly. Label appropriately.

#### Notes

1. Sampling time can be varied depending on ammonia in air.



Figure 1: Setup of the apparatus for sampling ammonia in air

## B. Measuring ammonium

(A new approach to indophenol blue method for determination of ammonium in geothermal waters with high mineral content, International Journal of Environmental Analytical Chemistry Volume 90, 2010 - Issue 2, pages 115 – 126)

### Materials

1. Phenol-ethanol solution: Add 1.1 ml liquified phenol (purity  $\leq$  89%) to 8.9 ml ethyl alcohol (95% v/v).

2. Sodium nitroprusside solution (0.5% w/v): Dissolve 0.05 g sodium nitroprusside in 10 ml deionized water.

3. Alkaline citrate solution: Dissolve 2 g trisodium citrate and 0.1 g sodium hydroxide in 10 ml deionized water.

4. Oxidizing solution: To 10 ml of alkaline citrate solution add 2.5 ml of 5% sodium hypochlorite to prepare the oxidising solution.

5. Ammonium chloride solution (1 mg/ml): Dissolve 0.01 g ammonium chloride in 10 ml deionized water.

6. Deionized water.

#### Procedure

- 1. Add 200 µl ammonium chloride solution to wells A1 and B1.
- 2. Add 100  $\mu$ I distilled water in wells A2 to A12, B2 to B12, C1 to C12, D1 to D12 and E1, E2.
- 3. Transfer 100 µl of ammonium chloride solution from well A1 to A2.
- 4. Mix A2 well and transfer 100 µl to A3.
- 5. Mix A3 well and transfer 100  $\mu l$  to A4.
- 6. Mix A4 well and transfer 100  $\mu l$  to A5.
- 7. Mix A5 well and transfer 100  $\mu l$  to A6.
- 8. Mix A6 well and transfer 100 µl to A7.
- 9. Mix A7 well and transfer 100  $\mu l$  to A8.
- 10. Mix A8 well and transfer 100 µl to A9.
- 11. Mix A9 well and transfer 100  $\mu I$  to A10.
- 12. Mix A10 well and transfer 100  $\mu I$  to A11.
- 13. Mix A11 well and transfer 100  $\mu I$  to A12.
- 14. Mix A12 well and transfer 100  $\mu l$  to C1.
- 15. Mix C1 well and transfer 100  $\mu l$  to C2.
- 16. Continue the dilution till C12. Discard 100  $\mu$ l.
- 17. Repeat the same for wells B and D.
- 18. Do not continue dilution in wells E1 and E2.
- 19. Add 100  $\mu$ I of samples to wells F, G and H (in triplicates).
- 20. Add 40 µL phenol-ethanol solution to each well. Mix well.
- 21. Add 40 µL sodium nitroprusside solution to each well. Mix well.
- 22. Add 100 µL oxidizing solution to each well. Mix well.
- 23. Incubate the plate for 20 min in the dark.
- 24. Record absorbance at 640 nm using a plate reader.
- 25. Import the data into a spreadsheet and plot a standard curve using
- measurements obtained from wells A to D that fall within the linear range.
- 26. Use the standard curve to calculate ammonium in samples.



Figure 2: Representative image of the plate layout

#### Notes

- 1. The assay gives a linear response between ammonium chloride concentrations of 0.244 and 31.25  $\mu$ g/ml.
- 2. Please dilute the samples if required.