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1. INTRODUCTION 
 

Modeling our gene circuits is of paramount importance since it provides us with 
deep insight and prediction capability of the biological processes taking place in 
ChatterPlant. This way, we aim to break the traditional wall imposed by trial-error 
approaches, which often result in unnecessary or inconclusive experiments. 

 
Mathematical models in synthetic biology contribute not only to generate 

empirically contrastable hypothesis but also to manage laboratory time and hardware 
resources efficiently. Furthermore, because of the understanding and foresight 
provided by modeling, tuning and programing ChatterPlant (link a la chatter) 
according to the necessities of certain situations is possible more than ever. 

 
 

1.1. DETERMINISTIC AND STOCHASTIC MODELS 
In ChatterPlant we analyze the dynamic behavior of our biological system (link 

explicación circuito) considering the biochemical species involved in a certain set of 
reactions. According to the degree of approximation to capture the dynamic behavior, 
we can differentiate two approaches: 

1. Deterministic. Deterministic models do not take into account the natural 
randomness of the reactions. For each chemical species, the amount of 
molecules transformed within reactions only depends on the initial 
amount of molecules, reaction rates and stoichiometry relations.  
The type of deterministic model that we implement is a system of Ordinary 
Differential Equations (ODEs) (link a este modelo). 

2. Stochastic. Inherent noise due to random events plays a relevant role in 
the dynamics. As a deterministic model does not capture noise, we use 
stochastic linear differential equations (link a este modelo). 
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2. OVERVIEW 
 
2.1. WHAT WE ARE MODELING 

The SynBio-based design integrated in ChatterPlant is composed by two gene 
circuits. The analysis of both their single performance and their interaction with 
several factors (e.g. the cell medium, environment and ChatterBox), is basic to reach 
one of our main goals: a new sustainable and efficient agriculture system (link a 
human?).  

Our model comprises of:  
 

1. Optogenetic circuit. How long has to remain the light pulse in order to get 
a certain protein amount? How could be optimized the energetic supply of 
LEDs light in order to maximize a cycle of protein production? These 
questions among others arose to our minds as we were designing the LED’s 
system. 

 
2. Sensor circuit. Bearing in mind the time span during which the biological 

sensor is transiently ON, it is mandatory to design a sampling rate test 
according to the plant’s periodic security necessities. 

 
 
 
2.2. MODELING SOFTWARE MODULES 

We start building the genetic circuits from basic modules, coupling them to 
generate the mathematical model of the whole system. As UPV_iGEM is an 
interdisciplinary team, most of the models generated in ChatterPlant are included in 
the modeling software tool (link modeling software tool) and are represented 
by modules in an artistic graphic interface, for the purpose of introducing researchers 
to a more realistic conception of the engineering in biology, meanly, SynBio. 
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3. HUMAN-PLANT: OPTOGENETIC CIRCUIT 
 

Two constitutive modules express the E-PIF6 and PhyB-VP64 fusion proteins that 
regulate the output expression.  

 
 

 

 
 

Constitutive modules representation of the fusion proteins E-PIF6 and PhyB-VP64. 
 

 
E-PIF6 binds to the promoter’s operator. When red light (660 nm wavelength) LEDs 

are switched on, PhyB changes its conformation (PhyB*) and binds to PIF6.  
Consequently, the transcription of the desired protein starts because of the RNAp 
recruitment by VP64. 

 

 

 
Expression regulated by the transcriptional factors. 

 
 
Far red light (740 nm wavelength) reverts PhyB* to its natural conformation (PhyB). 

This change stops de transcriptional activity of the third optogenetic circuit’s module. 
 
 
 



MODELING | Chatterplant 
	

6 
	

 
 

 

 
 

Switch off. 

 
3.1. DETERMINISTIC 
 
3.1.1. REACTIONS 
    

Now we take into account the principal reactions in each module representing 
them both graphic design and formal reactions. 

 

 

 
E-PIF6 expression 
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PhyB-VP64 expression 
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Regulated expression 

REACTIONS 
Constitutive module A=E-PIF6    

 

 
 
Constitutive module B=PhyB-VP64 
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Regulated module 
 

 

3.1.2. ASSUMPTIONS 
Considerations in the model: 

1. The cRNAp constant considers that the cell has the sufficient free RNAp in excess 
to be utilized by all the active genes that are transcribing simultaneously in 
the cell, including the gene of interest. Under this conception, the free RNAp 
vary in an almost unappreciable way in time, so can be defined as the cRNApFree 
constant and consequently the sum of the RNAp linked to the DNA and the 
free RNAp as the cRNAp constant. 

2. The RNAp binding-unbinding reactions to the promoter are much faster than 
the elongation and degradation reactions, so can be considered in the 
equilibrium state. 

3. Transcription reaction is faster than translation reaction, so can be considered 
in the equilibrium state. 

4. The conformation change is instantaneous. 
 
 
 
3.1.3. FINAL EQUATIONS 
After a mathematical development (download here for more information), we 
obtained the following equations, which define the constitutive and regulated 
expression respectively (where sub P is a generalization to name the protein). 
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Constitutive expression production is directly proportional to the translation rate (kP), 
to the transcription effective rate (kmPe), to the gene copy number (cnP) and inverse 
proportional to the mRNA degradation rate (dmP). The protein degradation is defined 
by the protein degradation rate in the cellular medium. 

Regulated expression is proportional to the Kp (proportional to the translation rate 
(kp), to the transcription rate (km), to the gene copy number (cnP) and inverse 
proportional to the mRNA degradation rate (dmP). 

 

 
Alphas and betas are defined by rates (see supplementary). When red light is 
off (y2=0), the expression becomes as: 

 

The basal expression depends on the E-PIF6 production. With the model 
obtained we discovered that the leakage can be reduced with a strong 
promoter on E-PIF6. 
 
 

 
3.1.4. SIMULATIONS AND CONCLUSIONS 
 
The optogenetic model is implemented in MATLAB. We start simulating for a 
pulse red light of 20 minutes. 
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E-PIF6 is expressing constitutively as well as PhyB-VP64. When red light is ON, 
as we considered the conformation change instantaneously, the active PhyB-
VP64 takes the current concentration from the inactive form and continues 
increasing because of its constitutive expression. Therefore, the desired output 
protein starts expressing. When red light turns off, the active PhyB-VP64 
degrades with its degradation rate, while the inactive form continues 
expressing. Since the switch is off, the output protein total expression stops 
(we have to consider both basal and active form degrading as they are 
transcriptional factors) and fall down by its own degradation rate. 

 

 

To study and to optimize energetic resources in our hardware, we simulate 
the dynamic optogenetic circuit’s behavior for a different values of light pulse 
time, taking as consideration that LEDs are in their maximum power thus the 
experimental optogenetic data was obtained in these conditions, and our 
model is characterized from these data. 
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When the light pulse time is greater, the protein from optogenetic circuit 
remains during more time. The difference between 1 minute and 30-70 
minutes is small, nonetheless, compared with the range of 400-700 minutes, 
the difference is evident. Depends on the controller’s decision and the needs 
in the specific time how many time has to be activated the LEDs system. 

As we thought not only depending on the energetic resources but also on the 
genetic constructions, a simulation at different gene copy number both E-
PIF6 and PhyB-VP64 has done.  
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As can be seen in the graph, from 70 to 95 gene copy number the result in 
the desired output expression is identical. So for a genetic efficiency, the 
variation of gene copy number has to be in the range from 1 to 70. 
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Here below there is a resume table of all reaction rates, where P is a generalization to 
name the protein. 

 

 

MODULE REACTION NAME RATE VALUE UNITS SOURCE 
 
 

CONSTITUTIVE 

Binding/unbinding 

RNAp to promoter 

kbRNAp 100 µM-1·min-1 Assumed 

kuRNAp 10 min-1 Assumed 

Transcription kmP 6 min-1 Assumed 
Translation kp 1 min-1 Assumed 

mRNA degradation dmP 0.1 min-1 Assumed 
Protein degradation dP 0.01 min-1 Zúrich 

2014 
iGEM 

 
 
 
 
 
 
 
 

REGULATED 

Binding/unbinding 

transcriptional factor 

1 (TF1) to operator 

kbTF1 100 µM-1·min-1 Assumed 

kuTF1 10 min-1 Assumed 

Binding/unbinding 

transcriptional factor 

2 (TF2) to operator-

TF1 complex 

kbTF2 100 µM-1·min-1 Assumed 

kuTF2 10 min-1 Assumed 

Binding/unbinding 

RNAp to operator-

TF1-TF2 complex 

kbRNApComplex 100 µM-1·min-1 Assumed 

kuRNApComplex 10 min-1 Assumed 

Binding/unbinding 

RNAp to operator 

kbRNAp 10 µM-1·min-1 Assumed 
kuRNAp 100 min-1 Assumed 

Transcription kmP 10 min-1 Assumed 
Translation kP 1 min-1 Assumed 

mRNA degradation dmP 0.1 min-1 Assumed 
Protein degradation dp 0.01 min-1 Zúrich 

2014 
iGEM 

	

MODULE REACTION 
NAME 

PARAMETER VALUE UNITS SOURCE 

 
 
 

RECOMBINASE 
INTERACTION 

PhiC31 dimerization 

rate 

kbPhi 60 µM-1·min-1 Smith,	M.	
C.	M.	
et.al. 

Dimerization 

dissociation 

constant PhiC31. 

Kii 0.3 µM Smith,	M.	
C.	M.	
et.al. 

PhiC31 

undimerization rate 

kuPhi = kbPhi · Kii 18 min-1 Smith,	M.	
C.	M.	
et.al. 
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RECOMBINASE-
REPORTER 

INTERACTION 

PhiC31 binding to 

BP reporter rate 

kbPhiBP 60 µM-1·min-1 Smith,	M.	
C.	M.	
et.al. 

Equilibrium 

constant PhiC31-

reporter BP 

Kb1 50 µM-1 Smith,	M.	
C.	M.	
et.al. 

PhiC31 unbinding to 

BP reporter rate 

kuPhiBP = kbPhiBP / Kb1 1.2 min-1  

Recombination rate kr 1 min-1 Smith,	M.	
C.	M.	
et.al.	

PhiC31 unbinding to 

LR reporter 

kuPhiLR 10 µM-1·min-1 Smith,	M.	
C.	M.	
et.al.	

Equilibrium 

constant PhiC31-

reporter LR 

Kb2 0.0047 µM Smith,	M.	
C.	M.	
et.al.	

PhiC31 biding to LR 

reporter 

kbPhiLR = Kb2 · kuPhiLR 0.047 min-1 [1]	

 
 
 
 
 
 
 
 
 
 
 
 

GP3-REPORTER 
INTERACTION 

Gp3 binding to BP 

reporter rate 

kbGP3LR 60 µM-1·min-1 Smith,	M.	
C.	M.	
et.al.	

Equilibrium 

constant Gp3-

reporter BP 

Kb3 40 µM-1 Smith,	M.	
C.	M.	
et.al. 

Gp3 unbinding to 

BP reporter rate 

kuGP3LR = kbGP3LR / Kb3 1.5 min-1 Smith,	M.	
C.	M.	
et.al. 

Recombination rate kr 1 min-1 Smith,	M.	
C.	M.	
et.al. 

Gp3 unbinding to 

BP reporter 

kuGP3BP 60 µM-1·min-1 Smith,	M.	
C.	M.	
et.al. 

Equilibrium 

constant Gp3-

reporter BP 

Kb4 0.0053 µM Smith,	M.	
C.	M.	
et.al.	

Gp3 biding to BP 

reporter 

kbPhiLR = Kb2 · kuPhiLR 0.0047 min-1 Smith,	M.	
C.	M.	
et.al.	
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3.1.2. MODEL AND CONSIDERATIONS  
For a better explanation of the mathematical’s model, we establish the dynamic 
balances for each module separately for finally couple them in the circuit’s design. 
 
3.1.2.1. CONSTITUTIVE MODULE  
Chemical species are defined by the next variables: 
 

 

 
Reactions occur at speeds proportional to the product of the reactant concentrations 
and to the proportionality factor, known as the reaction rate: 
 

 

 
Mass Action Kinetic gives: 
 

 

 
Since: 

  

 
we can define the next two constants: 
 

 

 
The first invariant defines the gene copy number as the sum of the DNA free and DNA 
linked to the RNApol. 
The second invariant assumes that the cell has the sufficient free RNAp in excess to 
be utilized by all the active genes that are transcribing simultaneously in the cell, 
including the gene of interest. Under this conception, the free RNAp vary in an almost 
inappreciable way in time, so can be defined as the cRNApFree constant and 
consequently the sum of the RNAp linked to de DNA and the free RNAp as the cRNAp 

constant.  
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Now we can consider the variation of x3 null because it is defined as the result of 
constants difference, as x3 is defined as the result of constants difference, we can 
consider its variation null: 

 
 

 
 

 

 

 
Considering that: 
 

 
 

we obtain  
 

 

 

 

 

 
 
From the transcription balance and x3: 
 

 

 
where the effective transcription rate is defined as: 
 

 

 
The model shows that de mRNA synthesis increases if the promoter has much affinity 
for the RNAp (k1A high) up to a limit given by the rate of transcription and the gene 
copy number. In addition, it is observed that if there are many cellular processes 
consuming free RNAp, the synthesis mRNA will decrease. 
 
Assuming that the transcription reaction is faster than the translation reaction, we 
obtain: 
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Finally, the protein expression of the constitutive module can be defined as comes: 
 

 

 
where the effective translation rate is defined as: 
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MODELING | Chatterplant 
	

21 
	

 

 

 

 

3.2. STOCHASTIC 
	

Like we know, all biological systems are affected by inherent noise coming from our 
environment. Not only at the macroscopic scale but also in the microscopic scale. Our 
genes expression depends on a lot of factors that define how our world evolves.  

So, the noise is a property of all biological systems and we have to be concerned about 
that. To take into account the randomness associated to natural system, 
including plants cells, we had the necessity of use stochastic models.  

With the objective of obtain a more realistic description of our optogenetic circuit, we 
decided to generate a stochastic model of our constructions. Due to the uncertainly 
related to these genetic modules, we decided to develop a model capable of going 
further than deterministic model.  

To continue, we are going to look over the theory behind this type of models and then 
we will be able to understand all about these curious models, including our own 
results. 

In stochastic models, people usually works with the chemical master equations (CME) 
which try to explain the evolution of a system with probabilistic rates. This master 
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equations are groups of differential equations that describe the switching of each 
chemical. Unfortunately, CME only can be solved in some practical cases (simple and 
linear cases). The CME expression can be obtained defining all balance equation for 
each probabilistic distribution.   

In these cases, in instead of using deterministic reaction rates, we use probabilistic 
reaction rates. These rates define the probability per time unit of one chemical 
changes to other or disappear. 

	

3.2.1. EXTENSION FROM DETERMINISTIC MODEL  

 

Let´s see it with an example: 

We have the next reactions for transcription. 

 

The probability of transcription is r and the probability of mRNA degradation is d. If 
we consider more than one gene copy, we would have a probability equals to number 
of copies * r, instead of r and the same for d. Now, we search for the expression of the 
probability of having n copies of mRNA at t+∂t time. We consider all the possible 
exclusive events that could occur in that reaction: 

- Have n-1 copies and the reaction of production occurs in ∂t. 
- Have n+1 copies and the reaction of degradation occurs in ∂t. 
- Have n copies and no reaction. 

So, the probability of a specific reaction is the product between the probabilistic 
reaction rate and the time that have been consumed. The probability mentioned 
before will be: 

 

Considering an infinitesimal time fraction, the CME would be: 

 

So, we would obtain an ODE equation for each possible value of n (copies of chemical). 
Solve the previous equation is a computational challenge, however there are solving 
methods that allow us to obtain equal results without that resource consume.  

It is important to note that the mean of solutions in stochastic model coincides with 
the deterministic dynamic of the mean concentration. We also use the Chemical 
Langevin Equation that approximates the CME with stochastic differential equations 
of an order equal or greater than species number. 
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Assuming a ∂t time period, we suppose that the reaction will occur several times 
between t and t+∂t. The number of reactions in a ∂t period is equal to the product 
between probability of have n copies of mRNA in t time with the probabilistic reaction 
rate (p(n,t)*r - reaction propension) and the time period ∂t. Like biological reactions 
are unpredictable, we consider a Poisson probabilistic distribution to describe the 
number of times that occurs a reaction in a ∂t period.  

The ʎ  parameter of Poisson distribution (expected events) are equals to the reaction 
frequency (p(n,t)*r*∂t) . Langevin approximation consider ʎ  sufficiently high to assume 
a normal distribution with mean ʎ  and variance ʎ , instead of Poisson distribution. 

Finally, the number of reactions in ∂t in a specific reaction will be:  

 

Which is the mean of possible reaction in ∂t plus the uncertainly associated (product 
of standard deviation in the number of reactions and gaussian normal, describing 
noise with mean 0 and standard deviation 1). 

Therefore, the sum of copies of ARNm in our cell in t+∂t could be approximated by 
the next expression:  

 

 

This equation can be generalized for any chemical expression in our cell. Only we 
would have to change the value of probabilistic rates like r and d. Also, we have to 
consider different normal distribution on each reaction. 

Constitutive module 

In all modules we have on the one hand the mRNA production and on the other hand 
the protein production that depends on the mRNA production. Obviously, each 
protein is associated with a different mRNA.  

In the constitutive one, we have the next equations: 

 

The probabilistic production rate is composed of the transcription rate and the 
number of copies of our gene (km ∙ cn). Obviously, to obtain the number of produced 
chemicals we have to obtain the product of the produced chemicals in one gene and 
the number of genes for that reaction. 

The transcription rate is the same as in deterministic model: 
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So, the equation for the production of our constitutive proteins is: 

 

Like we could see is the same structure as in the previous equation. In this case, the 
production depends on the amount of mRNA and the degradation depends on the 
quantity of protein. 

We would have these two previous equations for each constitutive protein. In our case, 
we have four equations: two for E-PIF6 and two for PhyB-VP64. 

For the PhyB-VP64 active form, we defined a new chemical in our model with the 
next equation: 

 

We have only considered the degradation of this chemical because its formation 
depends on the light stimulus. In our model we can define when we want to apply 
this stimulus and during how many time. If the light is on, all the inactivated 
PhyB_VP64 change its conformation (be transformed to activated PhyB_VP64) 
instantaneously and when we turn the light off, inactivated PhyB_VP64 starts to be 
increased. 

Regulated module 

For our target protein in our optogenetic circuit we have also two equations, one for 
the ARN and one for itself. In this case, the complexity come defined by the 
production rates. Following, we introduce both equations: 

 

This Kk probabilistic production depends on EPIF6 and activated PhyB_VP64 rate is 
defined by: 
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The final protein C equation would be the same as before: 

 

 
3.2.2. SIMULATIONS AND CONCLUSIONS 
	

	

Figure	1.	mRNA	expression	in	constitutive	module	

In	this	figure	we	can	see	the	variation	associated	to	the	expression	of	mRNA	for	constitutive	
proteins	in	our	system	due	to	the	gaussian	noise	added	to	the	expression.	
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Figure	2.	EPIF6	and	constitutive	expression	

	

Figure	3.	mRNA	expression	in	regulated	module	

Due	to	the	oscillating	production	of	mRNA	we	obtain	a	similar	variation	on	the	production	of	
the	protein	that	depends	on	it.	

	 	
	

Figure	4	and	5.	PhyB-VP64,	activated	PhyB-VP64	evolution	

In	this	image,	we	realize	about	the	behavior	of	our	model	when	we	put	the	red	light	on.	All	the	
inactivated	chimeric	protein	(PhyB-VP64)	changes	its	conformation	instantaneously	because	of	
its	dynamic	is	fast	enough	to	assume	it.	
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Figure	6	and	7.	C	protein	regulated	expression	and	basal	expression.	

We	can	confirm	visually	the	dependency	between	the	production	of	our	target	protein	(C)	and	
the	presence	of	both	activated	PhyB-VP64	and	EPIF6.	In	this	case,	we	simulate	a	light	stimulus	
in	minute	100	and	with	a	duration	of	20	min.	It	should	be	noted	that	apparently	our	optogenetic	
construction	has	a	filter	behavior.	We	can	see	that	the	noise	variation	in	RNA	messenger	is	not	
showed	on	the	production	of	our	target	protein	(C).			

3.4. OPTIMIZATION AND VALIDATION 
	

For	the	optimization	of	our	optogenetic	model	we	have	used	luciferase	results	obtained	in	lab.	
The	 optimization	 consists	 of	 comparing	 the	 values	 obtained	 with	 our	 model	 with	 empirical	
values.	 For	 that,	 we	 implemented	 a	 genetic	 algorithm	 to	 generate	 random	 values	 for	 the	
parameters	 of	 our	 model.	 Some	 of	 them	 are	 constricted	 to	 a	 fixed	 value	 and	 others	 are	
constricted	to	a	gap	of	values	ensuring	an	optimal	and	logical	solution.	

Also,	we	found	an	optimal	seed	(starting	point)	to	calculate	the	value	of	our	parameters.	Then	
the	 algorithm	 applied	 several	 iterations	 (generations)	 to	 reduce	 the	 relative	 error	 between	
experimental	data	and	model	data.	

In	order	to	have	an	easily	comprehension	of	changes	in	our	model	when	we	change	parameters	
value,	we	decided	to	simplify	the	model	taking	into	account	some	assumptions.	

	

Figure	x.	Final	equation	of	optogenetic	circuit	

	

Figure	x.	Simplification	of	our	model	in	two	steps.	

Then	we	proved	that	these	assumptions	didn’t	eliminate	simulation	capability	of	our	model	and	
we	ensure	that	we	didn’t	loose	of	information.		
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Finally,	we	obtained	these	results:	

	

Figure	7.	Here	we	can	see	how	the	algorithm	defined	the	Pareto	front	with	different	errors	in	
the	constitutive	expression	(darkness)	and	in	the	regulated	one	(red	light	presence).	

In	the	image,	lines	represent	the	model	fitted	to	the	points	(*),	which	are	results	obtained	in	this	
experiment.	In	this	case,	parameters	correspond	to	the	set	which	minimizes	the	red	light	model	
relative	error.	The	election	of	any	other	set	of	parameters	is	possible	and	responds	to	different	
subjective	criteria,	which	means	that	there	is	not	a	unique	optimal	solution.	
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Figure	8.	Representation	of	experimental	data	(points)	and	adjusted	model	(lines).	

Therefore,	we	got	a	model	able	to	predict	the	expression	of	a	target	protein	in	our	optogenetic	
construction.	The	following	table	contains	estimated	values	of	parameters	according	to	different	
importance	criteria.	

REACTION 
NAME 

RAT
E VALUE VALUE VALUE VALUE VALUE UNITS 

Production 
rate KEPIF 1000 1000 805,5715

98 1000 50 1/min 

Copy 
number nEPIF 200 200 200 200 200 copies 

Degradation 
rate dEPIF 0,280878

94 
0,228936

8 
0,215914

3 
0,348272

46 
0,348272

46 1/min 

Production 
rate KPhyB 342,6614

65 
892,5300

21 
930,1327

81 
964,1696

66 
494,4206

77 
Molecules/

min 
Copy 

number nPhyB 200 200 200 200 200 copies 

Degradation 
rate PhyB dPhyB 0,001 0,001 0,152157

29 0,001 0,371612
92 1/min 

Proportion of 
production 

with red 
light 

kchang

e 0,1 3,807692
05 

24,93990
62 0,1 42,48370

85 
No 

dimension 

Degradation 
rate 

activated 
PhyB-VP64 

dact 0,243405
4 

0,225505
66 

0,124319
98 

0,001509
99 0,001 1/min 

Luciferase 
translation 

rate 
KC 145773,0

44 
8826,193

41 3500 3500 3500 1/min 

ARN 
polimerase y 1 1 1 1 1 number 

Basal 
binding rate ky0 1 1 1 1 1 No 

dimension 
Binding rate 
polymerase – 
translation 
complex 

ky 1 1 1 1 1 No 
dimension 

Binding rate 
– EPIF-6 
operator 

Knc2 1 1 1 1 1 No 
dimension 

Binding rate 
– activated 

PhyB-VP64 , 
EPIF6 

Knc3 1 235,9173
11 

610,3756
21 1 749,9166

19 
No 

dimension 

Target 
protein 

degradation 
dC 0,045360

59 
0,002834

12 0,0008 0,001 0,001 1/min 

Variables 
compound 

alph
a 0,2 0,2 0,2 0,150408

84 
0,127930

09 1/min 

	
Figure	9.	Table	with	different	parameters	values	for	each	point	on	Pareto	front	from 

3.5. CONCLUSION 
	

- Human plant communication is feasible and has been confirmed by our in vivo 
and in silico results. 
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- To optimize plant response to red light, maintaining the same gene copy number 
for PhyB-VP64 and E-PIF6, translation rates for PhyB-VP64 need to be 8-fold higher 
than E-PIF's. 

- Given an importance criteria, the model could be used to tune the LEDs in order to 
obtain a desired amount of protein and economize energy resources.   

 

4. PLANT-HUMAN: SENSOR CIRCUIT 
 

A constitutive module expresses the integrase-recombinase PhiC31 which 
recombines the specific attachment sites of the reporter in BP state to LR state (BxP 
à LxR reaction, figure X), keeping this state because of the constitutive expression. 

 
When the dispenser puts on dexamethasone to the plant, the integrase-excisionase 

gp3 (also called recombination directionality factor -  RDF) expresses through the 
transitory effect of the dexamethasone. Gp3 with the presence of PhiC31 recombines 
the specific attachment sites to BP state, then the inducible promoter is addressed to 
produce the transcription product of the specific color under the respective stress 
inductor that switch on the expression in the reporter assembly. 
 
For more information, visit the biological design. 
 
4.1. DETERMINISTIC 
	
4.1.1. REACTIONS  
 
For this part of Chatterplant we have made two models to obtain information about 
the performance of the PhiC31 recombinase and Gp3. At first, we decided to produce 
a simple model to understand how PhiC31 works and how does the reporter assembly 
acts with the performance of PhiC31. For this part we consider these reactions: 
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Figure x. Graphic description of the behavior of our PhiC31 simple model with 
reaction parameters. 

 
 In the image we can see that PhiC31 (green hexagon) forms dimers and then each 
dimer joint with our register assembly. In this case, the experiments in lab used 
luciferase so our model is inspired on them. When PhiC31 is connected with our 
register, it acts and recombines the sites. Then PhiC31 leaves the register dimer by 
dimer. We would have expression of our target protein (luciferase) when the sites are 
recombined (LR). 
 
To continue, we show the formal reactions that correspond to the previous image: 
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Figure x. Reactions of PhiC31 – register assembly 
 
Next, we show the diagram related to the actuation of PhiC31 and GP3 at the same 
time, also we have to consider the reactions that we explain before. 
 

 

Figure x. Graphic representation of GP3 actuation  
 
Like we can see, a simple model about the GP3 actuation was considered without 
take into account the interaction between free GP3 and free PhiC31 in intracellular 
media due to this model provides us with the same information as the complex one. 
For that we compared the behavior of our model with a very complex model (The 
mechanism of C31 integrase directionality:  
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experimental analysis and computational modelling - Alexandra Pokhilko, Jia Zhao et 
al., 2016). 

 

Figure x. GP3 formal reactions 
 

4.1.2. MODEL AND CONSIDERATIONS  
In the literature, there are different approaches to model the recombinase-excisionase 
action. We started modeling theoretically basic supposed reactions to have a general 
knowledge as a first contact point. Then, studying the experimental results, we could 
better understand which reactions can be happening inside ChatterPlant. 

For the integrase-recombinase action: 

1. Monomeric PhiC31 doesn’t bind to the reporter, only dimers of PhiC31. 
2. The recombination performance is irreversible. 

For the integrase-excisionase action: 

1. Excisionase doesn’t dimerize in the cellular medium. 
2. Excisionase doesn’t form complexes with PhiC31 in the cellular medium. 
3. We consider cooperativity in the excisionase binding to the reporter. 
4. The recombination performance is irreversible. 

Sensivity analysis: 

To continue we are going to show the behavior of our model when we change the 
proportion between  
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4.1.3. IN SILICO EXPERIMENTS 

 
 

Temporal evolution of chemical species. 

 

As integrase-recombinase increases, the LR state increases, while BP state 
decreases, because of the recombinase performance on the reporter. As a 
result, starts the expression of the protein A in the reporter since LR is the on 
state. As can be observed on the evolution of A, for a greater concentration of 
recombinase, the production has a delay because of the Gp3 that is 
pretending to reverse de LR state to de BP state. In this case, finally 100% of 
the register is in LR state. 

4.1.4. CONCLUSIONS 
- It is crucial to select the concentration of PhiC31 and GP3 and its 

proportion to obtain a good behavior of our genetic device. 
- We have studied the importance of unproductive complex formed by 

PhiC31 ans GP3. 
- In the future, we consider that it is important to study the expression 

of our target protein with a dexamethasone stimulus. 
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7. CONCLUSIONS 
	

We have obtained a general vision of our genetic system, understanding it at 
all and creating strategies to work with it. 

We also have optimized our parameter value in the optogenetic circuit, having 
a model that can predict the protein production depending on the light 
stimuli.  

Taking into account that the experimental data are from plants, it usually is a 
point in favour because of its difficult extraction and consequently, a difficult 
optimization and characterization. 

With the recombinase model, we have obtained a model of a system that 
nowadays is un study and we have been able to understand how PhiC31 and 
GP3 works. Also, we think that it would be useful to future studies in this field. 

	

	

	

	


