function dydt=f(t,x) % All equations and values are taken from the article: % "Modelling the dynamics of the yeast pheromone pathway." % by Kofahl et. al % Rate constants, units are min^-1 or min^-1*nM^-1 depending on the order % of the reactions k1= 0.03; k2= 0.0012; k3= 0.6; k4= 0.24; k5= 0.024; k6= 0.0036; k7= 0.24; k8= 0.33; %0.33 kofahl k9= 2000; k10= 0.1; k11= 5; k12= 1; k13= 3; k14= 1; k15= 3; k16= 3; k17= 100; k18= 5; k19= 1; k20= 10; k21= 5; k22= 47; k23= 5; k24= 345; k25= 5; k26= 50; k27= 5; k28= 140; k29= 10; k30= 1; k31= 250; k32= 5; k33= 50; k34= 18; k35= 10; k36= 0.1; k37= 0.1; k38= 0.01; k39= 18; k40= 1; k41= 0.002; %0.002 kofahl k42= 0.1; k43= 0.01; k44= 0.01; k45= 0.1; k46= 200; k47= 1; k48= 7.77; %Msg2 (Dyjack) k49= 1; %Add TEFp production rate! k50= 0.000005; k51= 0.01; k52= 0.1; % Reaction kinetics for each reaction v1 = x(1)*x(29)*k1; %1 v2 = x(2)*x(1)*k2; %2 v3 = x(3)*k3; %3 v4 = x(3)*k4; %4 v5 = x(2)*k5; %5 v6 = x(3)*x(4)*k6; %6 v7 = x(5)*k7; %7 v8 = x(5)*x(36)*k8; %8 v9 = x(7)*x(6)*k9; %9 v10 = x(6)*x(8)*k10; %10 v11 = x(9)*k11; %11 v12 = x(10)*x(11)*k12; %12 v13 = x(12)*k13; %13 v14 = x(13)*x(14)*k14; %14 v15 = x(15)*k15; %15 v16 = x(12)*x(15)*k16; %16 v17 = x(18)*k17; %17 v18 = x(9)*x(16)*k18; %18 v19 = x(17)*k19; %19 v20 = x(17)*k20; %20 v21 = x(17)*k21; %21 v22 = x(18)*k22; %22 v23 = x(18)*k23; %23 v24 = x(19)*k24; %24 v25 = x(19)*k25; %25 v26 = x(20)*k26; %26 v27 = x(20)*k27; %27 v28 = x(21)*k28; %28 v29 = x(22)*x(14)*k29; %29 v30 = x(24)*k30; %30 v31 = x(24)*k31; %31 v32 = x(22)*k32; %32 v33 = x(23)*k33; %33 v34 = x(25)*x(23)*k34; %34 v35 = x(26)*k35; %35 v36 = x(26)*x(27)*k36; %36 v37 = x(28)*k37; %37 v38 = x(28)*k38; %38 v39 = x(30)*((x(23)^(2))/((100^(2))+x(23)^(2)))*k39; %39 v40 = x(31)*k40; %40 v41 = x(30)*x(35)*k41; %41 v42 = x(6)*x(31)*k42; %42 v43 = x(33)*k43; %43 v44 = x(34)*k44; %44 v45 = x(31)*x(35)*k45; %45 v46 = ((x(23)^(2))/((4^(2))+x(23)^(2)))*k46; %46 v47 = x(36)*k47; %47 v48 = ((x(26)^2.1))/((100^(2.1))+x(26)^(2.1))*k48; %48 exposure=x(37)*t; if exposure>5000 v49 = k49; else v49 = 0; end v50 = k50*x(37)*x(40); v51 = k51*x(38)^2*x(39)/500; v52 = k52*x(41); % Rate equations for each specie dydt=[-v1 %alpha factor -v2+v3-v5 %Ste2 v2-v3-v4 %Ste2active -v6+v9 %Galphabetagamma v6-v7-v8 %GalphaGTP v6-v9-v10+v11+v21+v23+v25+v27+v32-v42+v43 %Gbetagamma v7+v8-v9 %GaplhaGDP -v10+v11+v16-v17 %C v10-v11-v18+v19 %D -v12+v13+v17+v21+v23+v25+v27+v32 %Ste5 -v12+v13+v17+v21+v23+v25+v27+v32 %Ste11 v12-v13-v16 %A -v14+v15+v17+v21+v23+v25+v27+v32 %Ste7 -v14+v15+v17+v21+v23+v25+v27-v29+v30+v33 %Fus3 v14-v15-v16 %B -v18+v19+v21+v23+v25+v27+v32 %Ste20 v18-v19-v20-v21 %E v20-v22-v23 %F v22-v24-v25 %G v24-v26-v27 %H v26-v28+v31 %I v28-v29+v30-v32 %L v28-v33-v34+v35 %Fus3PP v29-v30-v31 %K -v34+v35 %Ste12 v34-v35 %Ste12active -v36+v37 %Bar1 v36-v37-v38 %Bar1active v38 %Bar1activeex -v39+v40-v41 %Far1 v39-v40-v42+v43+v44-v45 %Far1PP v41 %Far1ubi v42-v43 %M -v44+v45 %N v44-v45 %Cdc28 v46-v47 %Sst2active v48 %Cre/Fus1 v49 %Cas9 0.5*v50 %Mated diploids -v50 %Haploids v51-v52 %Cas9-gRNA complex ]; end