Q5 Hi Fi 2X Master Mix Protocol

Introduction

Get started by giving your protocol a name and editing this introduction.

Materials

>

- > Q5 High-Fidelity 2X Master Mix
- > 10 µM Forward Primer
- > 10 µM Reverse Primer
- > Template DNA
- > Nuclease-Free Water

Procedure

Assembly Overview

Table1				
ĸ	А	В	С	D
1	Component	25 μL Reaction	50 µL Reaction	Final Concentration
2	Q5 High-Fidelity 2X Master Mix	12.5 µL	25 µL	1X
3	10 µM Forward Primer	1.25 µL	2.5 µL	0.5 μM
4	10 µM Reverse Primer	1.25 µL	2.5 µL	0.5 μM
5	Template DNA	variable	variable	< 1,000 ng
6	Nuclease-Free Water	to 25 μL	to 50 μL	

1. Gently mix reaction. Transfer PCR tubes to PCR machine.

Thermocycling Conditions for a Routine PCR

Table2				
ĸ		A	В	С
1	STE	EP	ТЕМР	TIME
2	Initial Denaturation		98°C	30 seconds
3	25–35 Cycles		98°C	5-10 seconds
4			*50–72°C	10-30 seconds
5			72°C	20–30 seconds/kb
6	Fina	al Extension	72°C	2 minutes
7	Hole	d	4–10°C	

Table3

ĸ	A	В
1	DNA	AMOUNT
2	DNA Genomic	1 ng–1 µg
3	Plasmid or Viral	1 pg–1 ng

2. Primers:

Oligonucleotide primers are generally 20–40 nucleotides in length and ideally have a GC content of 40–60%. Computer programs such as Primer3 can be used to design or analyze primers.

The best results are typically seen when using each primer at a final concentration of 0.5 μM in the reaction.

3. Mg++ and additives:

The Q5 High-Fidelity Master Mix contains 2.0 mM Mg⁺⁺ when used at a 1X concentration. This is optimal for most PCR products generated with this master mix.

4. Deoxynucleotides:

The final concentration of dNTPs is 200 µM of each deoxynucleotide in the 1X Q5 High-Fidelity Master Mix. Q5 High-Fidelity DNA Polymerase cannot incorporate dUTP and is not recommended for use with uracil-containing primers or templates.

5. Q5 High-Fidelity DNA Polymerase concentration:

The concentration of Q5 High-Fidelity DNA Polymerase in the Q5 High-Fidelity 2X Master Mix has been optimized for best results under a wide range of conditions.

6. Denaturation:

An initial denaturation of 30 seconds at 98°C is sufficient for most amplicons from pure DNA templates. Longer denaturation times can be used (up to 3 minutes) for templates that require it. During thermocycling, the denaturation step should be kept to a minimum. Typically, a 5–10 second denaturation at 98°C is recommended for most templates.

7. Annealing:

Optimal annealing temperatures for Q5 High-Fidelity DNA Polymerase tend to be higher than for other PCR polymerases. The NEB T_m Calculator should be used to determine the annealing temperature when using this enzyme. Typically use a 10–30 second annealing step at 3°C above the T_m of the lower T_m primer. A temperature gradient can also be used to optimize the annealing temperature for each primer pair. For high T_m primer pairs, two-step cycling without a separate annealing step can be used (see note 10).

8. Extension:

The recommended extension temperature is 72°C. Extension times are generally 20–30 seconds per kb for complex, genomic samples, but can be reduced to 10 seconds per kb for simple templates (plasmid, *E. coli*, etc.) or complex templates < 1 kb. Extension time can be increased to 40 seconds per kb for cDNA or long, complex templates, if necessary.

A final extension of 2 minutes at 72°C is recommended.

9. Cycle number:

Generally, 25–35 cycles yield sufficient product. For genomic amplicons, 30-35 cycles are recommended.

10. 2-step PCR:

When primers with annealing temperatures \geq 72°C are used, a 2-step thermocycling protocol (combining annealing and extension into one step) is possible.

11. Amplification of long products:

When amplifying products > 6 kb, it is often helpful to increase the extension time to 40-50 seconds/kb.

12. PCR product:

The PCR products generated using Q5 High-Fidelity 2X Master Mix have blunt ends. If cloning is the next step, then blunt-end cloning is recommended. If T/A-cloning is preferred, the DNA should be purified prior to A-addition, as Q5 High-Fidelity DNA Polymerase will degrade any overhangs generated.