CAENORHABDITIS ELEGANS BIOGRAPHY

During our adventure through space and time we landed on the **Elegans** planet where we met its inhabitants the *C. elegans*. This cute crawling creatures really caught our attention. Their singularity, biological and physiological caracteristics pushed us to create a *C. elegans* guide.

In this guide we propose a thorough description of *C. elegans*. To allow the use of our data, we will present the role of *C. elegans* both within research and iGEM competition. We are also proposing you all the data we could harvest about promoters, genes and protocols associated with the *C. elegans* manipulation into a laboratory.

I) WHO IS C. ELEGANS

Our iGEM team has decided to work on *C. elegans*. on the grounds of the numerous advantages it presents regarding biological research.

This little worm is indeed easy to handle and suitable for microscope observation as it is 1 millimiter tall and transparent. Moreover this organism presents a short development cycle (approximatively 3 days) and a lifetime of three weeks. This is a great advantage that enables us to obtain a lot of individuals in a short time and assure the reproducibility of our experiments.

Despite its short size and its shape, this worm has many common points with our species. Actually, over 40% of its genes (19 099) would be similar to ours which makes it a great model to understand many human diseases. It notably made possible studies about apoptosis, an important process which helps the understanding of human cancer but also cellular aging.

http://wormclassroom.org/about-c-elegans

http://wormclassroom.org/short-history-c-elegans-research http://www.people.ku.edu/~erikl/Lundquist_Lab/Why_study_C. elegans.html http://hobertlab.org/wp-content/uploads/2013/03/Ankeny_2001.pdf

II) WHY IS *C. ELEGANS* SO IMPORTANT IN PUSHING BACK FRONTIERS OF SCIENCE ?

C.elegans has been used in a wide variety of domains like:

- Determining the effects of genetics versus environment on lifespan. [Klass MR Mech Ageing Dev. 1977 Nov-Dec; 6(6):413-29.]
- Evaluating which genes can individually impact lifespan, and how their mutations affect lifespan [Friedman DB, Johnson TE Genetics. 1988 Jan; 118(1):75-86.]
- Numerous studies on lifespan regulating genes in C.elegans has led to the theory that the FOXO3 gene in humans might impact human lifespan too.

Of course, these examples are only a small part of all the research on C.elegans but are the most accurate ones that were produced in the past few years.

https://scholar.google.fr/scholar?q=c+elegans http://modencode.sciencemag.org/worm/introduction https://www.yourgenome.org/facts/why-use-the-worm-in-research https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464094/

III) AND WHAT IS ITS IMPORTANCE FOR THE IGEM ADVENTURE ?

Team Valencia 2013 : creation of an artificial symbiosis between *C.elegans* and bacteria. This symbiosis relies on the moving ability of *C.elegans* but also on the biotechnological possibilities of bacteria :

E.coli : Interfering RNA synthesis to induce the social feeding behaviour of C.elegans (biobrick Bba K1112000 dans la souche *E.coli*, XL1-Blue)

- P.putida : KT2440 strain will be transported to point of interest (hot spots) and produce bioplastics, PHA •
- C.elegans : OP50 strain feeds on XL1-Blue strain of E.coli. C.elegans uses chemotaxis. There are two . pathogens (Y.pestis and X.nematophila) capable of producing biofilms on C.elegans. This relies on the operon encoding the hmsHFRS proteins. When a bacterium expresses this operon it can stick to the worm surface

ig.1. Biobrick for	inducing the	formation of th	he biofilm design.	
--------------------	--------------	-----------------	--------------------	--

Works?	Name	Туре	Description	Designer	Length	Fav
\bigcirc	BBa_K1112000	Regulatory	fadB promoter + FLP-21 iRNA	Pedro Luis Dorado Morales	344	٠
\bigcirc	BBa_K1112001	Coding	pGlnA + hmsHFRS operon	Alba Iglesias Vilches	6342	
\bigcirc	BBa_K1112002	Coding	Cluster PHA	Alba Iglesias Vilches	4978	

Team Hong-Kong UCCKE 2016 : the idea was to control an organism behavior. They tried to modify bacteria to make them produce chemicals attracting or repelling *C.elegans*. Cinnamaldehyde repelling : part K1889021.

Clone map	0						
BBa_K1889000					-		
Spacer EcoRI Xbal Promoter	RBS	PAL gene coding region	terminator	Spel Pstl	Spacer		
BBa_K1889001							
Spacer EcoRI Xbal Promoter	RBS	4CL gene coding region	terminator	Spel Pstl	Spacer		
BBa_K1889002							
Spacer EcoRi Xba1 Promoter	RBS	AtOCER1 gene coding regi	terminator	Spel Pstl	Spacer		
Clone map							
BBa_K1889007						Phenylpyruvic	acid
						attirant :	
Spacer EcoRI Xba1 Promoter	RBS	amino acid deaminase coding region	terminator	Spe1 Pst1	1 Spacer	part K1889006.	

By IGEM Bordeaux 2017

Team Bordeaux 2016 : That year, iGEM Bordeaux aimed at studying DSIP, a sleep-inducing peptide. In order to understand in which mechanisms this peptide is involved, it was introduced in the nematode *Caenorhabditis elegans* to see the effects on its sleep. Another aspect was to control the nematode's sleep pattern. They wanted to make a photo-inducible system that could be used on sleep gene promoters. On the other hand, they aimed to create a new tool to modify the genes involved in sleep using epigenetics: EpiCRISPR. Based on the CRISPR-CAS9 concept, they wanted to design it according to many strategies, see more details in the <u>Description</u> part.

Team Bordeaux 2017 : This year, IGEM bordeaux aimed at studying the alternative splicing of the unc-60 gene in *C.elegans*. In order to control the alternative splicing of this gene, it is important to control the synthesis of proteins involved in it's splicing. We wanted to create a photo-inducible system that would use two promoters of regulatory proteins ASD2 and SUP12. On the other hand, we aimed to use another system called the Q system allowing more precise control of the regulatory proteins of the unc-60 gene.

IV) PROMOTERS AND GENES

In order to investigate the *C.elegans*' promoters we used the Promoterome database which regroups around 6000 promoters that can be used to visualise (fluorescence) specific tissues or fusion proteins. This database also gives an access to many primers for each promoter.

Name	Size on Promoterome	Location	Ref Promoterome
Муо-2	976pb	-Pharyngeal muscle cells -Intestine 	http://worfdb.dfci.harvard.edu/promoteromed b/searchPromoterome.pl? by=name&sid=Myo-2
Муо-З	2001pb	-Body wall musculature -Intestinal muscle -Vulval muscle 	http://worfdb.dfci.harvard.edu/promoteromed b/searchPromoterome.pl? by=name&sid=Myo-3
Unc- 119	2000pb	-Neurons -Nerve ring -Dorsal nerve cord	http://worfdb.dfci.harvard.edu/promoteromed b/searchPromoterome.pl? by=name&sid=unc-119
Unc- 17	2000pb	-Cholinergic neurons	http://worfdb.dfci.harvard.edu/promoteromed b/searchPromoterome.pl? by=name&sid=unc-17
Unc- 47	1444pb	-GABAergic neurons	http://worfdb.dfci.harvard.edu/promoteromed b/searchPromoterome.pl? by=name&sid=unc-47
mec-8	2000pb	-nervous system -vulva 	http://worfdb.dfci.harvard.edu/promoteromed b/searchPromoterome.pl? by=name&sid=mec-8

By IGEM Bordeaux 2017

Ref Prom	http://www.worm base.org/#012-	
:	<u>54-5</u>	

To access the gene sequences of *C.elegans* we can use the wormbase database which regroups approximatively 20 000 coding genes and 16 000 non coding genes. Moreover this database allows to work on several nematodes such as *C. briggsae*, *C.remanei*, ...

Three interesting housekeeping genes for the 3'UTR region can be important for transcriptional regulation :

Name	Fonction	WormBase ID
rps-0	Coding for a ribosomal sub-unit	WBGene00004469
tbb-2	Coding for Beta-tubuline	WBGene00006537
unc-54	Coding for an havy chain of class II myosin	WBGene00006789

V) HOW TO USE C.ELEGANS FOR LABORATORY EXPERIMENTS ?

Many protocols can be found in Jonhatan Millet's thesis (pages 125-144).

	M9 medium	Freezing solution	NGM medium	LB medium
Specifications	AtionsThis culture medium allows to maintain <i>C.elegans</i> alive and is widely used to manipulate populations (genomic DNA preparation, post injection filtered through filtration units.allows long term conservation at -80°C.		used to keep alive the worms	liquid or solid medium used for bacteria growth.
	3 g KH ₂ PO ₄	0,58g NaCl	3 g NaCl	10 g tryptone
	6 g Na ₂ HPO ₄	0,68g KH ₂ PO ₄	2.5 g peptone	5 g yeast extract
	5 g NaCl 30g glycerol		12 g agar	10 g NaCl
	1 mL MgSO ₄ (1M) H ₂ O qsp 50mL		5 mg cholesterol	H_2O qsp 1 L
Composition	H ₂ O qsp 1 L		Autoclaving	For solid medium add 12 g
			1 mL CaCl ₂ (1M	agar for 1 L
			filtered)	Autoclaving before use
			1 mL MgSO ₄ (1M	Add antiobiotic to make

By IGEM Bordeaux 2017

	filtered) 0.40 g/l	G418	the medium selective (100 μg/mL)
	(selection)		For iRNA this medium is complemented with ampicillin (100 µg/mL)
			1 mM IPTG

V.1) GROWING CONDITIONS

The worms are grown onto NGM medium (or NGM + G418) covered by a *E.coli* carpet (OP50 or OP50-neoR). Incubation at 20°C or 15°C. Worms are then transferred into another box every 3 to 4 days.

V.2) MICROINJECTION

Injection mix has to be centrifuged (10 000g, 30 min) before each injection to pellet particles that could obstruct the needle.

5 µL of injection mix is loaded into a micro-injection capillary which is plugged into an injector.

The micro-injection is visualised through microscopy.

The injection is performed into syncytial area of one of the gonads for individuals in a young adult stage immobilized into an oil drop on an agarose (5%) lamina. Five individuals are then dropped onto boxes NGM + 418. The medium is checked by dropping five non injected worms.

Illustration 1: C. elegans pachytene region from wormbook

V.3) MICROSCOPE OBSERVATION

Worms are dropped onto lamina covered with 5% agarose into a drop of sodium azoture (10 mM) or levamisole (1 mM) to anesthetize the worms. Then a coverslip is used and the sample can be observed with a microscope.