
McMaster iGEM Team 2:   Mathematical Modelling 

 

Mathematical modeling is an integral component of the practice of synthetic biology: permitting 

the simulation of the behaviour of genetic circuits in biological systems. Mathematics could be 

harnessed to inform laboratory projects through predicting the characteristics and response of 

parts and systems a priori as well as to explain experimentally-derived data post hoc. Thus, our 

team developed a mathematical framework to predict the behaviour of elements of our design. 

 

Models were developed for two main purposes: 

 

1. Predicting the effects of changing extracellular conditions on promoter activity through a 

series of kinetic equations 

2. Simulating the stability of residues within the acyl homo-L-serine (AHL) synthase 

protein structure in response to the binding of its substrate S-adenosyl-L-methionine 

(SAM) to elucidate the putative residues that participate in its active site 

 

In the first model, we applied ordinary differential equations (ODEs) for transcription and 

translation with previously-reported parameters in the literature to predict the effect of 

extracellular pH on gadA promoter activity. In the second model, we utilized molecular 

dynamics simulations for SAM-binding determination of AHL synthase in silico.  

 

Reaction Kinetics at the gadA pH-responsive Promoter 

 

To predict the responsiveness of the pH promoter to changing extracellular pH within a 

heterogenous tumour microenvironment, we developed kinetic models to simulate the activity of 

the gadA promoter in the bacterial cell. 

 

Method 

 

In order to simulate the many mechanistic components of the pH-sensitive gadA promoter, we 

applied dissociation constants found in literature to a series of ODEs.  

 

The behaviour of the gadA promoter was predicted using the framework of the basic model of 

bacterial transcription and translation at a promoter as suggested by the central dogma.  

 

RNA Polymerase Binding:  

𝐷𝑁𝐴 + 𝑅𝑁𝐴𝑃 ↔ 𝐷𝑁𝐴 − 𝑅𝑁𝐴𝑃  
𝑑[𝐷𝑁𝐴−𝑅𝑁𝐴𝑃]

𝑑𝑡
= 𝑘𝑎𝑅𝑁𝐴𝑃−𝐷𝑁𝐴[𝐷𝑁𝐴][𝑅𝑁𝐴𝑃] − 𝑘𝑑𝑅𝑁𝐴𝑃−𝐷𝑁𝐴[𝐷𝑁𝐴 − 𝑅𝑁𝐴𝑃]  

 

RNA Polymerase Activation: 

𝐷𝑁𝐴 − 𝑅𝑁𝐴𝑃 →  𝐷𝑁𝐴 − 𝑅𝑁𝐴𝑃𝑎  
𝑑[𝐷𝑁𝐴−𝑅𝑁𝐴𝑃𝑎]

𝑑𝑡
= 𝑘𝑎[𝐷𝑁𝐴 − 𝑅𝑁𝐴𝑃]  

 

mRNA Transcription: 

𝐷𝑁𝐴 − 𝑅𝑁𝐴𝑃𝑎 →  𝐷𝑁𝐴 +  𝑅𝑁𝐴𝑃 +  𝑚𝑅𝑁𝐴   



𝑑[𝑚𝑅𝑁𝐴]

𝑑𝑡
= 𝑘𝑇𝑋[𝐷𝑁𝐴 − 𝑅𝑁𝐴𝑃𝑎] 

 

mRNA degradation: 

𝑚𝑅𝑁𝐴 → ⊘ 
𝑑[𝑚𝑅𝑁𝐴]

𝑑𝑡
= −𝑘𝑚𝑅𝑁𝐴𝑑𝑒𝑔[𝑚𝑅𝑁𝐴] 

 

Translation as modelled through Michaelis-Menten kinetics: 

𝑚𝑅𝑁𝐴 + 𝑅𝑖𝑏𝑜𝑠𝑜𝑚𝑒 ↔ 𝑚𝑅𝑁𝐴 + 𝑅𝑖𝑏𝑜𝑠𝑜𝑚𝑒 + 𝑃𝑟𝑜𝑡𝑒𝑖𝑛   
𝑑[𝑃𝑟𝑜𝑡𝑒𝑖𝑛]

𝑑𝑡
=

𝑘𝑇𝐿[𝑅𝑖𝑏𝑜𝑠𝑜𝑚𝑒][𝑚𝑅𝑁𝐴]

𝑘𝑀 + [𝑚𝑅𝑁𝐴]
 

 

The gadA pH-responsive element can be understood most simply by the following transduction 

pathway as described by Foster (2004): 

1. Detection from the membrane-bound sensor kinase EvgS 

2. Activation of the gadE transcription factor 

3. gadE binding to the gadA promoter element 

4. gadE-induced transcription at the gadA locus 

 

Detection of acidic protons with the membrane-bound sensor kinase EvgS 

𝐻+ + 𝐸𝑣𝑔𝑆 ↔  𝐸𝑣𝑔𝑆𝑎  
 

Activation of the gadE transcription factor 

𝐸𝑣𝑔𝑆𝑎 + 𝑔𝑎𝑑𝐸 → 𝑔𝑎𝑑𝐸𝑎 
 

These aforementioned processes can be modelled through least-squares curve-fitting on a 

Lorentzian curve with previously reported data associating pH with transcriptional activity 

through EvgS Histidine Kinase activation (Eguchi, Utsumi, 2014). As Eguchi and Utsumi 

reported their data in Miller units, the curve was transformed as a measure of gadE activation 

through assuming 𝑀𝑖𝑙𝑙𝑒𝑟 𝑢𝑛𝑖𝑡𝑠 ∝ 𝑔𝑎𝑑𝐸 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛, with a ceiling of  𝑔𝑎𝑑𝐸𝑖𝑛𝑖𝑡 =
6.1 𝑥 10−10 𝑀.  
 

gadE binding  

𝑔𝑎𝑑𝐸𝑎 + 𝐷𝑁𝐴 → 𝐷𝑁𝐴 − 𝑔𝑎𝑑𝐸𝑎 
 

gadE-induced transcription at the gadA locus 

𝐷𝑁𝐴 − 𝑔𝑎𝑑𝐸𝑎 → 𝑚𝑅𝑁𝐴 + 𝐷𝑁𝐴 + 𝑔𝑎𝑑𝐸 
 

 

Parameter values as reported by literature: 

Variable Description Estimated Value Reference 

𝑘𝑎𝑅𝑁𝐴𝑃−𝐷𝑁𝐴 RNA Polymerase 

Association constant 

with DNA 

5.7 𝑥 106 𝑀−1 𝑠−1 Bertrand-Burggraf et 

al., 1987 



𝑘𝑑𝑅𝑁𝐴𝑃−𝐷𝑁𝐴 RNA Polymerase 

Dissociation constant 

with DNA 

10 𝑠−1 Kierzek, Zaim & 

Zielenkiewicz, 2001  

𝑘𝑎 Closed complex 

isomerization  
10.5 𝑥 10−2 𝑠−1 Bertrand-Burggraf et 

al., 1987 

𝑘𝑇𝑋 Transcription kinetic 

constant 
1/300 𝑠−1 Karzbrun et al., 2011 

𝑘𝑚𝑅𝑁𝐴𝑑𝑒𝑔 mRNA degradation 

kinetic constant  
0.3 𝑠−1 Kierzek, Zaim & 

Zielenkiewicz, 2001  

 

𝑘𝑇𝐿 Translation kinetic 

constant 
4/65 𝑠−1 Karzbrun et al., 2011 

𝑘𝑑𝑔𝑎𝑑𝐸  gadE dissociation 

constant  

6 μM 

 

Krin, Danchin & 

Soutourina, 2010 

𝑔𝑎𝑑𝐸𝑖𝑛𝑖𝑡 Initial concentration of 

gadE transcription factor 
6.1 𝑥 10−10 𝑀 = 

370 
𝑔𝑎𝑑𝐸

𝐸−𝑐𝑜𝑙𝑖 𝐶𝑒𝑙𝑙
6.02 𝑥 1023𝑔𝑎𝑑𝐸/𝑚𝑜𝑙

1 𝐿

1 𝑑𝑚3∗
1 𝑢𝑚3

𝐸−𝑐𝑜𝑙𝑖 𝐶𝑒𝑙𝑙
∗

1 𝑑𝑚3

1012 𝑢𝑚3

 

Ishihama et al., 2014 

– estimation used Dan 

TF as a surrogate 

measure (part of the 

LysR TF family) 

𝐷𝑁𝐴𝑖𝑛𝑖𝑡 Initial concentration of 

DNA 
26 𝑥 10−6 𝑀 = 

0.017 
𝑝𝑔 𝐷𝑁𝐴

𝐸−𝑐𝑜𝑙𝑖 𝐶𝑒𝑙𝑙
650 𝑔/𝑚𝑜𝑙

1 𝐿

1 𝑑𝑚3∗
1 𝑢𝑚3

𝐸−𝑐𝑜𝑙𝑖 𝐶𝑒𝑙𝑙
∗

1 𝑑𝑚3

1012 𝑢𝑚3

 

ThermoFisher 

Scientific, nd 

𝑅𝑁𝐴𝑃𝑖𝑛𝑖𝑡 Initial concentration of 

RNA polymerase 
2.5 𝑥 10−6 𝑀  Shepherd, Dennis, &  

Bremer, 2001 

𝑅𝑖𝑏𝑜𝑠𝑜𝑚𝑒𝑖𝑛𝑖𝑡 Initial concentration of 

cytoplasmic ribosomes 
50 𝑥 10−9 M = 

3 𝑥 104 
𝑅𝑖𝑏𝑜𝑠𝑜𝑚𝑒𝑠
𝐸−𝑐𝑜𝑙𝑖 𝐶𝑒𝑙𝑙

6.02 𝑥 1023𝑟𝑖𝑏𝑜𝑠𝑜𝑚𝑒𝑠/𝑚𝑜𝑙

1 𝐿

1 𝑑𝑚3∗
1 𝑢𝑚3

𝐸−𝑐𝑜𝑙𝑖 𝐶𝑒𝑙𝑙
∗

1 𝑑𝑚3

1012 𝑢𝑚3

 

ThermoFisher 

Scientific, nd 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Modelling gadA Activity in Response to a pH Series  

 

Utilizing our previously described kinetic ODEs, we modelled the differential gene expression at 

the gadA promoter changes in response to changing extracellular pH. The following are the 

transformed experimental data from Eguchi & Utsumi (2014; left) utilized for curve-fitting and 

the simulated results (right):  

 

 
 

Modelling AHL Synthase Concentration in Response to Changing extracellular [H+]  

 

As our genetic circuit placed AHL synthase downstream of the gadA promoter to initiate quorum 

sensing, we modelled how the intracellular concentration of AHL synthase would be altered due 

to altered activity of the gadA promoter to a series of changing extracellular pH (as indicated by 

[H+]). We thus decided to parse the behaviour of AHL synthase expression in a [H+] series. 

following curves are the simulated results:  

 

 
 



Our model predicts that 0.5 uM of [H+] elicited the strongest induction of AHL synthase 

expression. The results of our model are in accordance with previously-determined experimental 

data characterizing the gadA promoter (link Dundee 2016 wiki page: 

http://2016.igem.org/Team:Dundee/Result). The results of this kinetic model affirm that the 

optimal activity of the gadA promoter lies between pH 5-5.5. This is concordant with the pH 

range of the tumour microenvironment as characterized by imaging studies (Chen & Pagel, 

2015). For example, Castelli and colleagues (2014) determined that the in vivo extracellular pH 

of murine melanoma ranged from 5.2–6.4. This suggests that the gadA promoter can be applied 

to our project, which aims to develop a self-limiting tumour-killing genetic circuit responsive to 

an acidic tumour microenvironment. 

 

Molecular Dynamics Simulations 

 

Using the GROMOS 54a7 force-field with the GROMACS MD package on MacSim, a GPU-

accelerated workstation in the Origins of Life Lab at McMaster University, we were able to run 

replicate all-atom molecular dynamics (MD) simulations. The acyl homo-L-serine synthase 

enzyme was taken from the PDB database (1R05) and fit in a rectangular box with ~12000 water 

molecules with a periodic boundary condition applied in all directions. The systems were energy 

minimized, and equilibrated with the NVT/NPT ensemble prior to running 20 production 

simulations of 5 ns each. For systems with the SAM ligand to the AHL synthase, umbrella 

sampling was used to find it’s most preferred state in the bilayer. Then the molecule was placed, 

using VMD, in the water layers surrounding the protein Monte-Carlo. 20 production simulations 

for 10 ns were run.  

 

The first term is a Lennard-Jones (LJ) potential, which approximates the typical interaction 

between pairs of neutral atoms and molecules. The second term is based on Coulomb's law and 

holds the electrostatics between. The last term holds the dihedrals of angle restraints. To define 

further the interactions between these atoms in the system, we must draw vector fields around 

each atom from its position in space using quantum mechanics. We utilized the CHARMM36 

forcefield (Mackerell et al. 2004) to define all our atoms and residues which contained the 

equations defining these fields. 

 

 

 

The root-mean square fluctuations (RMSF) of each residue was calculated as a measure for the 

residue instability, by the following equation: 

 

http://2016.igem.org/Team:Dundee/Result)


𝑅𝑀𝑆𝐹 =  √
1

𝑇
∑(𝑥𝑖(𝑡𝑗) − 𝑥𝑗)

2
 

Where xi(tj) is the position of a molecule at some time t, and xj is the initial position. By 

calculating the sum of the squared differences, we calculate the fluctuations of these atoms.  

 

From doing so, we sampled the protein and created an average plot of the RMSF. We find that 

the Aspartate at position 135 in the membrane is stable after umbrella sampling with the 

presence of the AHL synthase ligand SAM.  

 

 
 

 

The potential of mean force (PMF) can be calculated from placing a restraining the SAM ligand 

with some bias, δ, and observe this stability as it is moved from position a to b. From this, we 

can confirm if this is the true binding site of the protein. These simulations are still being 

conducted. 
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