
Warwick iGEM Model

December 14, 2017

1 What Actually is a Mathematical Model?

Before a proper introduction, modeling can seem like a very abstract concept with no apparent
connection to lab work. It can quite easily come across as some gratuitous ’extra science’ with little
to no real world consequences. However, used correctly it can be extremely useful for predicting
the behavior of a biological system, or optimizing such a system. This benefit allows for potentially
massive amounts of time saved in a lab; if the modeling highlights a mechanism that will fail, this can
be anticipated and edited before the lengthy process of ordering parts, PCR, gene insertion, growing
the culture etc. Even once the biological mechanism is functioning in the lab, a sturdy model allows
for rapid iteration and optimization that would not be possible given the time constraints involved
with wet lab work. Used properly, a model is an additional tool in conjunction with the lab to add
functionality to the design process, saving time and resources.

1.1 Simplicity is Key

I still have not actually described what a model is though. The key to approaching it is to keep
in mind that a mathematical model is a fundamentally basic concept, but one may seem initially
daunting if it is built up of lots of different parts to form something more complex. If its broken
down and examined in the right way, each piece of a model will be simple, and will come together
to perform one overall function. Much like the modular nature of synthetic biology itself.

Modeling follows the principle that the behavior of physical system can be described using
mathematical equations. The system will be made up of variables, and these variables will have
different mathematical relationships with each other. One variable might be a function of a number
of other variables, etc.

1.2 Falling Ball Example

A simple example of mathematical model of a system could be a ball, falling from a height h, under
the force of gravity g. For a simplistic model, the ball is governed by its position in space, y, its
velocity, v, its acceleration, a, and the time elapsed from an initial event, t. We are then able to
construct a set of equations to show how the properties of the system vary with time. We know
that each second, its position in space y changes by its velocity v. We also know that with each
second, its velocity v, changes by its acceleration, a. These equations would be as follows:

dy

dt
= v (1)

1



dv

dt
= a (2)

These two basic equations, now govern the relationships between the key variables identified for
the behavior of the falling ball system. (This will all become relevant shortly!). We have outlined our
time dependent relationships for the system, now we just need to establish some system parameters.
Parameters are a fairly broad term when it comes to modeling. The best way to consider them is
inputs to the system that do not vary with time or other time dependent variables. For our falling
ball example, our input parameters will be the gravitational constant, g, and the initial height from
which the ball is dropped, h. We will program into our model that at t = 0, y = h; also that a = g.
This simulates the ball being released at the start of the simulation from the height h, and will
have a constant acceleration of g.

So where am I going with all of this? Well what we have outlined here is all the basic components
for a mathematical model. Once you have identified the variables of your system, the mathematical
relationships that connect those variables and the input parameters for that system, you can then
write these into a script form for a programming platform such as MATLAB. I’m not going to go
into the details of how to write that script here, but learning code syntax should not be considered
a significant barrier if this is something you want to explore. Once the model has been built (the
model is not a physical thing, just a system of equations to approximate a system), the differential
equations need to be solved. The reason we do computational modeling is that for more complex
systems, solving the differential equations by hand is not a trivial task (where in the case of our
falling ball example it would be). Platforms such as MATLAB often come with built in solvers for
systems of differential equations that will process them using numerical approximations. All you do
is create your system, send it to the solver and then the solver will return a solution. Whilst a lot
of this may seem abstract, such as ’send it to the solver’, it really is that simple, and understanding
that you create the mathematical description for the system, then use built in functions to process
this information is sufficient to have a good idea of what is going on.

Now we have a basic model for a falling ball that can predict the position, velocity and accel-
eration of the ball at any point in time. Testing this against a real ball falling from a set distance,
we might find some differences between the model and reality. From there we can develop the
sophistication of the model to improve its ability to predict the ball’s behavior. Perhaps we could
add equations to take air resistance into account, or add x and z positional components; maybe
rotational components too. You would add all of these additional relationships in the same way we
started with the governing principles of the system. The point is that it is just a matter of simple
steps to build up a sophisticated model.

1.3 How does this Relate to Biology?

Well a biological system is just the same as a mechanical system in many respects. It has a number
of variables, such as reactant and product concentrations, it has parameters, such as reaction
rates, and it has governing equations, such as reaction kinetics. The issue is, in comparison to the
falling ball situation, a biological system is incredibly complex. In the context of iGEM, engineers,
computer scientists and biologists must work together to decide what level of system representation
(how many governing equations are needed) is sufficient to accurately predict the behavior without
becoming over complex. Often the system can be massively simplified and still yield surprisingly
accurate results.

2



2 Our Model

2.1 Switching Mechanism

Our model focused on a principal called ’Cellular Economics’. Cellular Economics places attention
on the fact that the cell has a finite amount of resources which it uses to carry out host functions.
These resources are quantities such as energy, metabolites, ribosomes etc. When synthetic genes
are inserted into the cell genome, some of the finite resources will be spent on the synthetic genes
and will impede the performance of the cell. For example, if the cell has to use ribosomes to
produce an inserted gene, it will not be able to use those ribosomes at that point to produce its
metabolic enzymes and therefore the cell has less available energy. As you can see there is a knock
on effect and sometimes a positive feedback effect can be established when adding foreign genes
to the genome. Our project aimed to insert a light activated mechanism into E.Coli to stimulate
the production of cellulose. The dynamic model for the cell was adapted from WEIßE. Y. et al.
Mechanistic Links between cellular trade-offs, gene expression, and growth. PNAS, 2014. Using
this dynamic model as a template, we added the relevant genes for our light activated circuit. From
there we were able to test the model to see if there were any obvious failure mechanisms for our
circuit and analyze the performance of the light switching mechanism in more detail. From the
figure below, it is clear that at 5000 seconds (where we simulated light activation) the cell responds
dramatically. Most importantly out of all these changes the cell produces gn, which is the notation
for cellulose in our model. It is clear from these results that our theoretical cell is very responsive
to the light activation an functions as intended.

3



Figure 1: Graphs to show the behaviour of the cell when light activated.

2.2 Multi Objective Genetic Algorithm

The next step in our modelling process was to implement a multi objective genetic algorithm as
outlined in Deb, Kalyanmoy. Multi-Objective Optimization Using Evolutionary Algorithmsto create
a set of ‘host mindful’ design parameters for our genetic circuit. These parameters are the ribosome
binding site strengths of our inserted genes and their respective transcription rates. The model
demonstrates a trade off between cellulose production and the cell’s growth rate; the multi objective
genetic algorithm optimises this trade off and allows us to select an operating point that suits the
design needs of the system. The way this works is that the genetic algorithm creates a population
of individual cells with unique parameter values. It simulates the cells performances and ranks
them on their growth rate and cellulose production (the two objective functions). It then iterates
the populations with this in mind varying the parameter sets; this produces an output known as a
Pareto front, an optimised graph showing the trade off between our two objective functions (shown
in the figure below).

4



3 Pareto Front

Figure 2: A graph showing the optimised trade off of the two objective functions.

Using the Genetic Algorithm to perform a multi objective optimisation, we were able to produce
a figure showing the cellulose output to growth rate trade off for different operational parameters.
From this figure we selected seven individual operational points, as shown on the graph, that could
be used to ensure the cell’s performance suited its application. This figure is an interesting result
as there is a shelf where growth rate can be improved without affecting the cellulose output. This is
a feature that the modeling process has been able to identify and could be exploited in the future.

4 Operation Points

Table 2.1 shows the operation points for the cell and the corresponding parameter sets for tran-
scription rate and ribosome binding strengths of the inserted gene circuit. For lab implementation,
the desired trade off point between cell growth rate and cellulose output can be selected from the
table and then required parameters can be read off.

5



Table 1: Model Operation Parameters
Operating Point wM wO wK wP wI wS bM bO bK bP bI bS λ Cellulose Output

1 11.56 5.41 10.84 5.65 80.66 121.94 0.42 0.68 0.36 0.56 0.25 0.51 0.0069 1.77e+07
2 16.71 5.17 16.94 4.83 80.34 82.78 0.41 0.62 0.42 0.54 0.45 0.65 0.011 1.75e+07
3 4.91 3.08 62.78 1.44 179.45 32.39 0.45 0.92 0.78 0.25 0.91 0.93 0.013 1.42e+07
4 8.32 3.45 56.31 2.37 214.21 19.32 0.51 0.72 0.78 0.23 0.82 0.91 0.015 1.07e+07
5 4.49 2.73 29.14 1.98 124.71 14.19 0.14 0.78 0.59 0.42 0.89 0.79 0.017 7.11e+06
6 3.16 2.26 19.56 1.71 29.42 7.59 0.18 0.64 0.68 0.36 0.89 0.61 0.020 3.73e+06
7 2.76 1.00 2.69 1.00 1.00 47.40 0.00 0.00 0.65 0.45 1.00 0.015 0.023 1.65e-08

5 Appendix - Mathematical Description

For this model outline we will define all the species present in the model, but some reactions will
be omitted as they are included in the model referenced in the description.

5.1 Species Definitions

gg = Glucose
ee = Energy
cc = Cyclic-di-GMP
gn = Cellulose
mT = Glucose Importer mRNA
cT = G-Importer Ribosome Complex
pT = Glucose Importer Protein
mE = Metabolism Reaction mRNA
cE = Metabolism Ribosome Complex
pE = Metabolism Reaction Protein
mH = Host Protein mRNA
cH = Host Protein Ribosome Complex
pH = Host Protein
mR = Ribosome mRNA
cR = Ribosome Ribosome Complex
pR = Ribosome
mM = Membrane Protein mRNA
cM = Membrane Protein Ribosome Complex
pM = Membrane Protein

pM∗ = Activated Membrane Protein
mO = ompR mRNA
cO = ompR Ribosome Complex
pO = ompR Protein
pO∗ = Activated ompR
mK = C-di-GMP Producer mRNA
cK = C-di-GMP Producer Ribosome Complex
pK = C-di-GMP Producer Protein
mP = C-di-GMP Decayer mRNA
cP = C-di-GMP Decayer Ribosome Complex
pP = C-di-GMP Decayer Protein
mI = tetR Protein mRNA
cI = tetR Protein Ribosome Complex
pI = tetR Protein
mS = Cellulose Machinery mRNA
cS = Cellulose Machinery Ribosome Complex
pS = Cellulose Machinery Protein
pS∗ = Activated Cellulose Machinery

5.2 Host Parameter Definitions

vT = Glucose Import Rate
kT = Michaelis Menton Constant for G-Importer Protein
vE = Rate of Catalysis for Metabolic Protein

6



kE = Michaelis Menton Constant for Metabolic Protein
wX = Default maximum transcription rate
wH = Host Protein maximum transcription rate
wR = Ribosome maximum transcription rate
oX = Default transcription threshold energy for half maximal rate
oR = Ribosome transcription threshold energy for half maximal rate
dymX = Default decay rate
bX = Default RBS strength
uX = Default ribosome unbinding rate
nX = Default protein length
nR = Ribosome protein length
maxG = Maximal elongation length
kG = Michaelis Menton constant for cellulose production
M0 = Cell mass
kH = Host Protein Hill function constant
hH = Host Protein Hill function constant

5.3 Circuit Parameter Definitions

wM = Membrane Protein transcription rate
wO = ompR Protein transcription rate
wK = C-di-GMP Producer transcription rate
wP = C-di-GMP Decayer transcription rate
wI = tetR protein transcription rate
wS = Cellulose machinery transcription rate
bM = Membrane protein RBS strength
bO = ompR protein RBS strength
bK = C-di-GMP producer protein RBS strength
bP = C-di-GMP decayer protein RBS strength
bI = tetR protein RBS strength
bS = Cellulose machinery RBS strength
kO = ompR Hill function constant
hO = ompR Hill function constant
kI = tetR Hill function constant
hI = tetR Hill function constant
vK = C-di-GMP producer enzymatic rate
kK = C-di-GMP producer Michaelis Menton constant
vP = C-di-GMP decayer enzymatic rate
kP = C-di-GMP decayer Michaelis Menton constant
sS = Cellulose enzymatic parameter
vS = Cellulose enzymatic parameter
kS = Cellulose enzymatic parameter
fs = cc to pS binding rate
rs = pS∗ -cc unbinding rate
kM∗ = Membrane protein activation reverse reaction constant

7



krO = ompR∗ degradation to ompR reaction constant

5.4 Translation Rate Parameters

ribosomestranslating = cT + cE + cH + cR + cM + cO + cK + cP + cI + cS

γ = maxG×ee
kG+ee

λ = 1
M0
× γ × ribosomestranslating

Note: This section neglects transcription.

5.5 Membrane Protein

mM
λ+dymX−−−−−−→ ∅

pR +mM
bM↼−−−−⇁
uX

cM

cM

λ
nM−−→ pR + pM +mM

cM
λ−→ ∅

pM
λ−→ ∅

pM∗
kM∗−−−→ pM

pM∗
λ−→ ∅

5.6 ompR Protein

mO
λ+dymX−−−−−−→ ∅

pR +mO
bO↼−−−−⇁
uX

cO

cO

λ
nO−−→ pR + pO +mO

cO
λ−→ ∅

8



pO + pM∗ −→ pO∗ + pM∗

pO
λ−→ ∅

pO∗
krO−−→ pO

pO∗
λ−→ ∅

5.7 C-di-GMP Producer

mK
λ+dymX−−−−−−→ ∅

pR +mK
uK↼−−−−⇁
bK

cK

cK

γ
nK−−→ mK + pK + pR

cK
λ−→ ∅

pK
λ−→ ∅

5.8 C-di-GMP Decayer

mP
λ+dymX−−−−−−→ ∅

pR +mP
uP↼−−−−⇁
bP

cP

cP

γ
nP−−→ mP + pP + pR

cP
λ−→ ∅

pP
λ−→ ∅

9



5.9 tetR Gene Protein - yhjh Gene Inhibitor

mI
λ+dymX−−−−−−→ ∅

pR +mI
uI↼−−⇁
bI

cI

cI

γ
nI−−→ mI + pI + pR

cI
λ−→ ∅

pI
λ−→ ∅

5.10 Cellulose Producing Proteins

mS
λ+dymX−−−−−−→ ∅

pR +mS
bS↼−−−−⇁
uS

cS

cS
λ−→ ∅

cS

λ
nS−−→ mS + pS + pR

pS
λ−→ ∅

pS + cc
fS
↼−−⇁
rS

pS∗

pS∗
λ−→ ∅

5.11 C-Di-GMP

ee
pK−−→ cc

cc
pP−−→ ∅

cc
λ−→ ∅

10



5.12 Cellulose Production

gg
pS∗−−→ gn

5.13 Transcription Rates

g2mM = wM×ee
oX+ee

g2mO = wO×ee
oX+ee

g2mK = wK×ee
oX+ee ×

(
pO∗
kO

)hO

1+(
pO∗
kO

)hO

g2mP = wP×ee
oX+ee ×

1
1+(

pI
kI

)hI

g2mI = wI×ee
oX+ee ×

(
pO∗
kO

)hO

1+(
pO∗
kO

)hO

g2mS = wS×ee
oX+ee

5.14 Translation Rates

m2pM = γ
nM
× cM

m2pO = γ
nO
× cO

m2pK = γ
nK
× cK

m2pP = γ
nP
× cP

m2pI = γ
nI
× cI

m2pS = γ
nS
× cS

5.15 Membrane Protein

dmM
dt = g2mM − (λ+ dymX)×mM +m2pM − bM × pR ×mM + uX × cM

dcM
dt = −λ× cM −m2pM + bM × pR ×mM − uX × cM

dpM
dt = m2pM − λ× pM + kM∗ × pM∗

11



dpM∗
dt = −λ× pM∗ − kM∗ × pM∗

5.16 ompR Protein

dmO
dt = g2mO − (λ+ dymX)×mO +m2pO − bO × pR ×mO + uX × cO

dcO
dt = −λ× cO −m2pO + bP × pR ×mO − uX × cO

dpO
dt = m2pO − λ× pO − pO × pM∗ + krO × pO∗

dpO∗
dt = pO × pM∗ − krO × pO∗ − pO∗ × λ

5.17 c-di-GMP Producer

dmK
dt = g2mK − (λ+ dymX)×mK +m2pK − bK × pR ×mK + uX × cK

dcK
dt = −λ× cK −m2pK + bK × pR ×mK − uX × cK

dpK
dt = m2pK − λ× pK

5.18 c-di-GMP Decay

dmP
dt = g2mP − (λ+ dymX)×mP +m2pP − bP × pR ×mP + uX × cP

dcP
dt = −λ× cP −m2pP + bP × pR ×mP − uX × cP

dpP
dt = m2pP − λ× pP

5.19 tetR Protein - yhjh Inhibitor

dmI
dt = g2mI − (λ+ dymX)×mI +m2pI − bI × pR ×mI + uX × cI

dcI
dt = −λ× cI −m2pI + bI × pR ×mI − uX × cI

dpI
dt = m2pI − λ× pI

12



5.20 Cellulose Producing Proteins

dmS
dt = g2mS − (λ+ dymX)×mS +m2pS − bS × pR ×mS + uX × cS

dcS
dt = −λ× cS −m2pS + bS × pR ×mS − uX × cS

dpS
dt = m2pS − λ× pS − fS × cc× pS + rS × pS∗

dpS∗
dt = fS × cc× pS ×−rS × pS∗ − λ× pS∗

5.21 C-Di-GMP

dcc
dt = vK×ee×pK

kK+ee − vP×cc×pP
kP+cc − λ× cc

5.22 Cellulose Production

dgn
dt = vS×gg×pS∗

kS+pS∗

6 Contributors

Postgraduate Modelling Instructor - Alexander Darlington
Warwick iGEM Modelling Student - Ben Cox

13


