
Summary 
<p>Modeling played a pivotal role in our <a href='/Project.html' class='in-text-link' 
target='_blank'>project</a>. It helped us: (i) incorporate <a 
href='/HP/Gold_Integrated.html' class='in-text-link' target='_blank'>expert’s input</a> 
in designing novel metabolic engineering strategies; (ii) consolidate our 
understanding of the photosynthetic host and its adaptive strategies to diurnal light 
fluctuations; and (iii) guide our experimental design and the mimicking of industrial 
conditions. We extended a genome-scale metabolic reconstruction of 
<i>Synechocystis</i> such that it could simulate the behavior of different synthetic 
constructs. This model was analyzed using state-of-the-art constraint-based 
techniques with the goal of designing a synthetic organism in which fumarate 
production directly from CO<sub>2</sub> is aligned with microbial fitness. 
Mimicking of industrial light regimes in the lab was achieved by deducing sinusoidal 
functions coupled with algorithms that generate stochasticity resembling the one cells 
encounter in production scenarios. Our modelling efforts combined culminated in the 
first <i>in silico</i> photosynthetic cell factories that produce fumarate day and night. 
This design has been successfully validated in other <a href='/Produce.html' 
class='in-text-link' target='_blank'>modules</a> of our project </p> 
 

                 
<h1>Aligning biomass and product formation</h1> 
<p>We	have	been	alerted	by	<a href='/HP/Gold_Integrated.html' class='in-text-link' 
target='_blank'>experts	in	biotechnology	</a>at	the	onset	of	this	project	that	
phenotypic	stability	can	be	a	real	hurdle	in	the	scaling	up	of	biotechnology	
processes.	A	clever	way	to	stabilize	a	production	trait	is	to	align	the	
anthropogenic	needs	(i.e.	high	level	production)	with	those	of	the	production	
host	(i.e.	fitness).	Although	previously	attempted	in	chemoheterotrophs	[1],	and	
also	in	cyanobacteria	[2],	this	is	easier	said	than	done.	Particularly	for	the	latter,	
as	typically	these	strategies	involve	coupling	product	formation	to	the	ability	of	a	
cell	to	regenerate	energy	and	redox	cofactors.	The	caveat	for	photoautotrophs	is	
that	their	systems	to	capture	the	energy	of	photons	into	chemical	bonds	has	
evolved	to	contain	a	large	set	of	safety	valves	for	electrons	-	alternative	electron	
flow	pathways.	Removing	these	<i>in	silico</i>	leads	to	stable	growth	coupling	
on	the	computer	screen	-	but	unfortunately,	not	in	the	lab	-	as	these	cells	become	
very	crippled	and	unable	to	deal	with	very	small	light	variations	[3].</p> 
 
<p>A	closer	inspection	of	metabolic	network	maps	reveals	that,	Although	often	
neglected,	anabolic	pathways	are	in	reality	mined	with	reaction	that	produce	
side-products,	in	addition	to	the	intermediates	that	will	subsequently	be	(used	to	
synthesize)	biomass	components.	These	side-products	are	usually	recycled	back	
via	dedicated	metabolic	routes	to	guarantee	an	efficient	use	of	cellular	resources.	
In	the	case	of	photosynthetic	organisms,	given	the	large	energetic	requirements	
associated	with	carbon	fixation,	this	recycling	is	particularly	important,	as	it	
really	does	not	pay	off	to	allow	the	carbon	contained	in	side-products	of	
anabolism	to	be	lost.	This	has	been	used	as	an	argument	to	explain	the	extended	
anabolic	versatility	of	photoautotrophs	and	their	reduced	number	of	
auxotrophies	(i.e.	nutrient	requirements	for	growth)	[4].	But	hitherto	has	never	
been	exploited	to	develop	growth-coupled	production	strategies.</p> 



<h1>Introducing	 “FRUITS”</h1>	
<p>	 Building	 up	 on	 the	 ideas	 brought	 forward	 by	 the	 	<a	
href='http://2015.igem.org/Team:Amsterdam'	 class='in-text-link' 
target='_blank'>2015	 Amsterdam	 iGEM	 team</a>,	 an	 algorithm	 has	 been	
developed	to	'Find	Reactions	Usable	In	Tapping	Side-products'	–	FRUITS.	This	is	
freely-available	 at	<a href='https://gitlab.com/mmp-uva/fruits.git' class='in-text-
link' target='_blank'>https://gitlab.com/mmp-uva/fruits.git	 </a>.	 It	 identifies	
side-products	of	anabolism	that	are	suitable	to	be	coupled	to	growth	of	the	cells	
by	deletion	of	their	re-utilization	reaction(s).	A	constrained	(e.g.	here	mimicking	
industrial	 conditions)	 genome-scale	 model	 (GSM)	 of	 the	 desired	 production	
organism	 (e.g.	 here	 <i>Synechocystis</i>),	 is	 the	 only	 input	 required.	
Implemented	as	a	pipeline	of	Python	scripts,	FRUITS	produces	(i)	a	list	of	all	the	
modeled	metabolites	that	can	be	produced	in	a	growth-coupled	fashion;	(ii)	the	
gene	deletions	that	are	required	for	it;	and	(iii)	the	computed	maximal	biomass	
formation	 rate	 along	 with	 the	 predicted	 minimum	 flux	 towards	 the	 identified	
target	compounds.	<br> 
FRUITS	starts	by	evaluating	the	GSM	for	reactions	responsible	for	the	synthesis	
of	macromolecules	(e.g.	proteins,	DNA	or	RNA)	and	their	precursors	(e.g.	amino	
acids	 or	 nucleotides).	 All	 reactions	 identified	 are	 then	 dissected	 into	 their	
products	 and	 substrates.	 A	 distinction	 for	 the	 products	 is	 drawn	 between	
biomass	 precursor	metabolites	 (i.e.	 strictly	 used	within	 the	 anabolic	 pathway)	
and	 co-produced	 molecules	 (i.e.	 that	 are	 not	 necessarily	 directly	 used	 as	 a	
substrate	 in	 an	 anabolic	 pathway).	 The	 list	 of	 co-produced	 compounds	 is	 then	
shortened	by	removing	molecules	that	do	not	contain	carbon	(e.g.	 ions)	or	that	
are	cofactors	that	act	as	energy	carriers	or	redox	equivalents	(e.g.	ATP,	NADPH,	
NADH	 or	 CoA).	 The	 remaining	 metabolites	 constitute	 the	 list	 of	 preliminary	
candidates	that	will	be	further	considered.	</p> 
 
<p>	Modeling	wise,	a	compound	can	only	be	accumulated	if	it	can	be	exchanged	
within	 the	 boundaries	 of	 the	 defined	 system.	 In	 modeling	 terminology,	 this	
means	that	a	metabolite	must	be	a	<i>boundary	species	</i>	for	which	a	so-called	
<i>sink	 reaction	 </i>	 is	 present.	 The	 metabolites	 in	 the	 preliminary	 list	 of	
candidates	do	not	necessarily	have	a	sink	reaction,	which	would	not	allow	them	
to	ever	be	predicted	to	accumulate.	This	is	resolved	by	creating	a	model	version	
for	each	compound	of	the	list	in	which,	if	necessary,	a	single	new	“artificial”	sink	
reaction	is	added	for	the	respective	target	compound.	These	multiple	models	are	
then	 further	 analyzed	 individually.	 Obviously,	 in	 reality	 it	 is	 very	 important	 to	
know	the	exact	 localization	of	where	a	product	will	 accumulate.	 In	 this	project	
particular	 attention	 has	 been	 devoted	 to	<a href='/Export.html' class='in-text-link' 
target='_blank'>transport</a>	 as	 <a href='/HP/Gold_Integrated.html' class='in-text-
link' target='_blank'>experts	 alerted	us	</a>	 to	 the	 great	 impact	 that	 it	 has	on	 the	
economic	feasibility	of	a	biotechnological	process	as	well.	</p> 
 
<p>The	 topology	 of	 the	 metabolic	 network	 of	 each	 of	 these	 models	 is	 then	
evaluated	to	assess	the	possibility	to	make	each	respective	candidate	compound	
in	 a	 strict	 growth-coupled	 way.	 Basically	 we	 want	 to	 find	 whether	 the	 re-
utilization	 of	 a	 target	 compound	 can	 be	 completely	 disrupted	 through	 gene	
deletions;	 and	 if	 so,	 which	 one(s).	 This	 is	 done	 using	 an	 in-house	 Python	
implementation	extended	 for	gene	deletions	 [5]	of	Optknock	[6].	We	then	 limit	



the	 maximum	 number	 of	 deletions	 permitted	 according	 to	 our	 experimental	
capacity.	 While	 Optknock	 identifies	 the	 deletions	 necessary	 to	 maximize	 a	
specific	objective	flux,	it	does	not	guarantee	that	the	product	is	uniquely	coupled	
to	an	anabolic	pathway.	The	strict	stoichiometric	coupling	of	the	rates	of	biomass	
and	product	formation	are	therefore	tested	via	Flux	Variability	Analysis	(FVA)	on	
the	 constrained	 model	 with	 the	 proposed	 gene	 deletions,	 while	 using	 the	
maximization	 of	 biomass	 formation	 as	 the	 objective	 function.	 If	 the	 exchange	
reaction	for	the	target	compound	has	a	minimum	flux	greater	than	zero,	then	the	
viability	 of	making	 it	 growth-coupled	 is	 confirmed	 (<i>in	silico</i>	of	 course!).	
The	 output	 of	 this	 FRUITS	 will	 report	 a	 list	 containing	 the	 identified	 target	
compounds	 along	 with	 the	 associated	 gene	 knockouts	 necessary	 and	 the	
maximal	biomass	and	minimum	target	product	formation	rates.<br> 
During	 this	 iGEM	 project,	 our	 supervisors	 have	 validated	 this	 approach,	
showcasing	 it	 experimentally	 on	 the	 growth-coupled	 production	 of	 acetate.	 A	
manuscript	 describing	 the	 algorithm	 and	 its	 experimental	 validation	 was	
submitted	 at	 the	 end	of	 the	 Summer	 and	 is	 currently	 under	 review	 [7].	 In	 our	
project,	we	have	in	parallel	applied	FRUITS	to	<i>Synechocystis</i>	focusing	on	
a	different	target	product	-	fumarate.	</p> 

<h1>'Collecting	 the	 FRUITS	 of	 <i>Synechocystis</i>	 without	 damaging	 the	
branches”</h1> 

<p>FRUITS	was	applied	to	the	GSM	of	<i>Synechocystis</i>	iJN678	with	default	
constraints	 that	 support	 a	 light-limited	 growth	 rate	 of	 0.052	 h<sup>-1</sup>	
[8].	The	output	of	FRUITS	lists	nine	target	metabolites	(Table	5.1).	Based	on	the	
ratio	 between	 the	 production	 rate	 of	 each	 compound,	 and	 the	 respective	
maximal	 growth	 rate,	 the	 predicted	 product	 yield	 on	 biomass	
(Y<sub>p/x</sub>)	can	then	be	calculated.</p> 
 
<figure id=’tab51’> 

    <img src=’images/figures/Model1_tab5.1.png’ class=’module-figure-image’> 

<figcaption class=’module-figure-text’><b>Table	5.1</b>		<i>Metabolites that 
can be produced in a growth coupled way based on in silico simulations 
during constant light.</i> 
</figure> 
 
 
 

Metabolite Growth rate 
(h-1) 

Yield 
(mmol gDW-1) 

5-Methylthioadenosine 0.052 0.007 

Acetate 0.052 0.195 



Mercaptopyruvate 0.034 5.702 

5'-Deoxyadenosine 0.052 0.044 

3,4-dihydroxy-2-butanone 4-phosphate 0.051 0.732 

Adenine 0.052 0.032 

Adenosine 0.052 0.032 

S-Adenosyl-L-homocysteine 0.052 0.025 

Fumarate 0.051 0.848 

 
 

<p>An	 important	 pattern	 in	 the	 output	 of	 FRUITS	 (table	 N)	 is	 the	 inverse	
proportionality	 between	 the	 predicted	 maximal	 growth	 rates	 and	 the	
Y<sub>p/x</sub>	 normalized	 over	 the	 number	 of	 carbon	 atoms	 per	molecule	
(C-mol).	 To	 put	 it	 bluntly,	 the	 more	 carbon	 is	 deviated	 towards	 product	
formation,	 the	 slower	 the	 culture	 is	 predicted	 to	 grow.	 The	 same	 pattern	was	
observed	experimentally	for	lactate	production	in	<i>Synechocystis</i>	[9],	when	
the	 flux	 towards	 lactate	 was	 allosterically	 increased	 without	 changing	 the	
expression	 level	 of	 the	 responsible	 enzyme	 (L-lactate	 dehydrogenase).	 This	
suggests	 that	 the	 fitness	 trade	off	 at	 the	 core	of	 the	phenotypic	 instability	 that	
haunts	 biotechnology	 according	 to	 <a href='/Export.html' class='in-text-link' 
target='_blank'>transport</a>	 as	 <a href='/HP/Gold_Integrated.html' class='in-text-
link' target='_blank'>experts	</a>	 and	 literature	 [10,	 11],	 is	 hardwired	 already	 in	
the	structure	of	the	metabolic	network.	<br> 
All	 the	 target	 compounds	 identified	 by	 FRUITS	 have	 never	 been	 tested	
experimentally	 to	 be	 indeed	 possible	 to	 couple	 to	 growth.	 To	 the	 best	 of	 our	
knowledge,	 the	 only	 exception	 is	 acetate,	 which	 as	 mentioned	 above,	 <a 
href='/Export.html' class='in-text-link' target='_blank'>transport</a>	 as	 <a 
href='/Team.html#supervisors' class='in-text-link' target='_blank'>our	 supervisors	
</a>	have	used	to	validate	the	method	[7].	We	convinced	them	to	let	us	try	to	test	
this	 for	 fumarate	 within	 this	 iGEM	 project	 mainly	 because	 out	 of	 all	 these	
compounds,	 fumarate	 is	 the	 one	 that	 currently	 is	 mostly	 derived	 from	 oil.	
Luckily,	they	agreed!	</p> 
 
<h1>Model	 guided	 photoautotrophic	 growth-coupled	 production	 of	
fumarate.	</h1> 



<p>We	 started	 by	 performing	 Flux	 Balance	 Analysis	 (FBA)	 of	 the	
<i>Synechocystis</i>	 model	 iJN678,	 constrained	 to	 simulate	 photoautotrophic	
growth,	and	using	maximization	of	the	flux	through	the	biomass	equation	as	the	
objective	function.	Examination	of	the	optimal	 flux	distributions	rapidly	gives	a	
sense	of	how	fumarate	is	being	produced	and	consumed	at	the	same	rate	(hence,	
no	 accumulation!)	The	picture	 that	 emerges	 is	 very	different	 from	what	one	 is	
accustomed	 when	 looking	 for	 instance	 at	 respiring	 <i>E.	 coli</i>	 or	 other	
chemoheterotrophs	 (i.e.	 fumarate	 is	 produced	 and	 consumed	 within	 the	 TCA	
cycle).	 In	 stark	 contrast,	 the	 flux	 towards	 fumarate	 in	 photoautotrophically	
cultured	<i>Synechocystis</i>	is	coming	exclusively	as	a	side-product	of	anabolic	
reactions	within	both	purine	and	urea	metabolism.	The	fumarate	that	is	released	
in	the	latter	two	is	then	re-assimilated	through	the	TCA	cycle	(which	is	actually	
not	 really	working	 as	 a	 cycle	 then)	 via	 the	 activity	 of	 a	 class	 II	 fumarase	 that	
converts	 it	 to	malate.	 Fumarase	 is	 encoded	by	 the	 gene	<i>fumC</i>	(slr0018)	
and,	as	first	revealed	by	FRUITS,	independent	model	simulations	using	a	variant	
of	 iJN678	 in	 which	 <i>fumC</i>	 is	 silenced,	 indeed	 predict	 production	
of		fumarate	with	a	Y<sub>p/x</sub>	of	0.848	mmol	gDW<sup>-1</sup>. 
 
The	prediction	 that	a	<i>fumC</i>	deletion	 results	 in	growth	coupled	 fumarate	
production	was	subsequently	tested	experimentally.	How	this	was	done	and	the	
results	 obtained	 are	 reported	 <a href='/Production.html#intro1' class='in-text-link' 
target='_blank'>here.</a></p> 
 
<h1>Conclusion</h1> 
<p>	The	modeling	 framework	 applied	 here	 has	 allowed	us	 to	 select	 a	 suitable	
product	 (fumarate)	 and	 devise	 a	 strategy	 to	 align	 its	 production	with	 biomass	
formation.	The	experimental	validation	of	the	main	predictions	made	here	is	an	
important	 step	 towards	 achieving	 one	 of	 our	 overall	 <a href='/Project.html' 
class='in-text-link' target='_blank'>goals	 </a>-	 ''	 to	 create	 stable	 and	 robust	
photosynthetic	cell	factories''.	To	make	it	explicit,	this	modeling	exercise	predicts	
that:</p> 

<ul	class='produce-list'> 
<li>A	 <i>fumC</i>	 deletion	 strain	 of	 <i>Synechocystis</i>	 forcibly	 makes	
fumarate	</l> 
<li>	 The	 rates	 of	 production	 and	 growth	 are	 stoichiometrically	 coupled	 (i.e.	
faster	growth	implies	faster	production,	and	vice-versa)</li> 
<li>This	results	in	phenotypic	stability</li> 

</ul> 
 
<p>Finally,	 it	 is	 important	to	note	that	all	these	predictions	have	been	done	for	
cells	 cultured	 photoautotrophically	 in	 the	 presence	 of	 light.	 We	 did	 perform	
FRUITS	also	using	iJN678	but	now	under	darkness	using	glycogen	consumption	
as	the	carbon	and	energy	source	(i.e.	simulating	chemotrophic	growth).	We	were	
curious	to	see	whether	there	would	be	something	interesting	related	to	fumarate	
there,	or	potentially,	to	identify	other	interesting	targets.	Unfortunately,	this	did	
not	 yield	 many	 new	 compounds	 besides	 the	 ones	 we	 had	 already	 picked	 up	
before,	 except	 for	 3-Phospho-D-glycerate.	 Although	 the	 predicted	
Y<sub>p/x</sub>	 is	 very	 tempting	 (184.4	 mM.gDW<sup>-1</sup>	 -	 not	 a	
typo!),	this	comes	at	the	cost	of	a	drastic	drop	in	growth	rate.</p> 



 

<figure id=”tab52”> 

    <img src=”images/figures/Model1_tab5.2.png” class=”module-figure-image”> 

<figcaption class=”module-figure-text”><b>Table	5.2.</b>		<i>Metabolites 
that can be produced in a growth coupled way based on in silico simulations 
during darkness relying on glycogen as carbon and energy source.</i> 
</figure> 
 

 
<p>Although,	fumarate	is	not	on	the	list	of	compounds	on	Table	5.2,	we	did	not	
give	up	on	trying	to	stabilize	its	production	also	during	darkness.</p> 
 

<H2	id=ppp>Modeling the native metabolism under nighttime 
conditions</H2> 
<p>As discussed on our <a href='/Production.html#daynight' class='in-text-link' 
target='_blank'>production</a> page, being able to produce during the night as well 
as the day is a prerequisite for any industrially viable, cyanobacterial production 
strain. Towards this end, we continued to use FBA to analyze a variant of the iJN678	
model,	where	the	reaction	corresponding	to	the	one	catalyzed	by	the	
<i>fumC</i>	product	is	silenced	(i.e.	our	in	silico	<i>&#916;</i><i>fumC</i>	
strain).	In	order	to	get	an	accurate	representation	of	nighttime	metabolism,	we	
constrained	our	model	to	simulate	heterotrophic	growth,	where	the	primary	
substrate	is	glycogen.	Our	model	predicts	that	even	under	this	different	trophic	
mode,	the	same	Y<sub>p/x</sub>	of	0.848	mmol	gDW<sup>-1</sup>	is obtained 
for fumarate production. However, there is one 'small’ caveat that our model does not 
explicitly address.</p> 
 
<p>As a photosynthetic organism, <i>Synechocystis</i>' primary metabolism has 
evolved towards primarily exploit the energy of light. This does not mean that it is 
completely metabolically inactive at night, as it still needs to produce some energy to 
cover certain maintenance costs. However, compared to the day, 
<i>Synechocystis</i> is more or less 'asleep' during the night, metabolically speaking 



[12]. So although the fumarate yield is not predicted to change, due to drastically 
decreased overall flux through the system, the fumarate production rate is expected 
to be much less during the night. In order to test if our model corroborates this 
expectation, we turned to dynamic FBA constrained by experimental data acquired 
during circadian regimes. Simulating a sinusoidal light regime and using measured 
glycogen consumption rates [13], we were able to get a more accurate 
representation of fumarate production for our in silico <i>&#916;</i><i>fumC</i> 
strain over a 24 hour period (fig. 5.1).</p> 
 

 
 
<figure id=fig51><img src=images/figures/Model3_5.1.png class=module-figure-
image><figcaption class=module-figure-text><b>Figure	 5.1.</b>	 	<i>Dynamic 
Simulation of fumarate Production from <i>&#916;</i><i>fumC</i>. The grey shaded 
area signifies the night where the white background signifies the day. Fumarate and glycogen 
are both given in units of mmol L<sup>-1</sup>, whereas biomass is in g L<sup>-
1</sup>.</i></figure> 
 
 
 



<p>As expected, when our model is fitted with experimental data, it predicts that 
during the night both the growth and fumarate production rates drop drastically. From 
this simulation, it appears that deleting the <i>fumC</i> gene is not enough for stable 
nighttime production.  So in order to get a higher nighttime production rate, the first 
thing we had to ask ourselves was, why?</p> 
 
<p>Examining our model under simulated night, it became apparent that the majority 
of the flux from glycogen was passing through the Pentose Phosphate pathway 
(PPP). As explained <a href='/Produce.html' class='in-text-link' 
target='_blank'>here</a>, diverting flux away from the PPP and towards the TCA 
cycle could increase the nighttime fumarate production. However, since the PPP 
consists of many reactions involved in both day and nighttime metabolism, we 
needed to find a gene (or genes) which when removed would not only silence the 
PPP during the night, but also not affect the growth rate, and thus fumarate 
production, during the day. Using both literature [14] and our model, we were able to 
determine that the <i>zwf</i> gene was just the gene we were looking for. In fact, 
when silencing the reactions associated with the <i>zwf</i> gene on the 
<i>&#916;</i><i>fumC</i> background 
(<i>&#916;</i><i>zwf</i><i>&#916;</i><i>fumC</i>) in our model during the night, 
the Y<sub>p/x</sub>	on	fumarate	jumps	up	from	0.848	to	3.17	mmol	
gDW<sup>-1</sup>.	During	the	day,	knocking	out	<i>zwf</i>	is	predicted	to	
have	no	effect.	This	is	exactly	what	we	were	looking	for	and	so	we	tested	it	<a 
href='/Produce.html' class='in-text-link' target='_blank'>experimentally	</a>.	(Spoiler	
alert:	IT	WORKS!)</p> 
 
<h1	>Modeling beyond the native metabolism to further increase stable 
fumarate production</h1> 

<p>The double deletion strain <i>&#916;</i><i>fumC</i><i>&#916;</i><i>zwf</i> 
produces fumarate around the clock, which is quite an achievement, but still we 
wanted to try to improve it further. In this strain, during the night, the deletion of the 
<i>zwf</i> blocks the PPP forcing the carbon flux towards the TCA cycle. However, 
the <i>fumC</i> deletion suppresses the cyclic nature of the TCA. This means that 
the maximum stoichiometry that we could hope to achieve is to produce one 
fumarate per glucose catabolized. In order to achieve any further improvement, we 
now knew that we would have to shift somehow this stoichiometry. Only way to do 
that is to rewire the network. We looked into nature for inspiration. <br> 

Many organisms possess a glyoxylate shunt. This pathway, consisting of isocitrate 
lyase (ICL) and malate synthase (ML), will split isocitrate into glyoxylate and 
succinate in a first step, and then convert glyoxylate together with acetyl-CoA into 
malate. It creates a sort of shortcut into the TCA, in which the activity of succinate 
dehydrogenase could be very relevant for this project as it converts succinate to 
reduced co-factors (FADPH2) and fumarate. We hypothesized that a synthetic 
glyoxylate shunt in <i>Synechocystis</i>, would not only reconnect the broken TCA 
cycle of the <i>&#916;</i><i>fumC</i> strain, but also increase the flux towards 
fumarate production, by feeding into reactions which produce electron carriers. This 
would potentially align fitness during the night and fumarate production. This is 
exactly the type of positive selection pressure, which could stabilize the expression of 
this heterologous pathway in a production strain. </p> 
 
<p>Using our new iJN678 model variant, we first investigated the individual effect for 
each glyoxylate shunt enzyme on growth rate and fumarate production(fig. 5.2). This 
was done by forcing the flux through one of the reactions while the other was kept off 
(i.e. constrained to a flux of 0). We simulated both day (photoautotrophic) and night 



(chemoheterotrophic) metabolism, as well as the <i>zwf</i> deletion during the night. 
Note that the <i>zwf</i> deletion was not simulated in conjunction with daytime 
metabolism as the reactions catalyzed by <i>zwf</i> are not used during the day, 
and hence its deletion would have no effect. Moreover, due to thermodynamic 
constraints, the flux through MS (J<sup>MS</sup>) was only simulated in the 
positive direction whereas the flux through ICL (J<sup>ICL</sup>) was simulated in 
both the positive and negative directions. </p> 
 

 
<figure id=fig52> 
    <img src=images/figures/Model4_5.2.png class=module-figure-image> 

<figcaption class=module-figure-text><b>Figure	5.2.</b>		<i>The effect of 
either ICL or MS on growth and fumarate production. The x axis is the value of the forced 
flux through the reaction as denoted by the x axis label. For plots A and C, the y axis is 
growth rate (hr<sup>-1</sup>) and for plots B and D, the y axis is fumarate production (mmol 
gDW<sup>-1</sup> hr<sup>-1</sup>). Three different scenarios are also shown in each 
graph: (green) Day, (blue) Night <i>&#916;</i><i>zwf</i>, and (purple) Night.</i> 
</figure> 
                 
<p>In these simulations what we are looking for at first is for peaks in growth rate. 
These can act as attractor states for Darwinian selection. Then for our application 
specific interests, these peaks will only interest us, if they also require an increase 
fumarate production. In other words, we want to align the microbial interests, to ours. 
</p> 
 



<p>The first thing we noticed was that the growth rate for <i>&#916;</i><i>fumC</i> 
peaks when either J<sup>ICL</sup> or J<sup>MS</sup> are 0 during the Day and 
Night scenarios (fig. 5.2A and fig. 5.2C). This signifies that flux through either of 
these reactions under those scenarios is predicted to reduce growth rate, and 
therefore, lead to the phenotypic instability we aim to avoid. Simply put, expressing 
(part of) the glyoxylate shunt in <i>&#916;</i><i>fumC</i> is predicted to be 
unstable. This is a prediction that we actually decided to a 
href='/Produce.html#intro3' class='in-text-link' target='_blank'>try to test </a> even 
though we know that it will not lead to increased stable fumarate production (if our 
predictions are right, of course).</p> 
 
<p>In contrast the <i>&#916;</i><i>fumC</i><i>&#916;</i><i>zwf</i> strain under a 
night scenario displays a peak in growth rate at non-zero fluxes for the two enzymes. 
Moreover, this growth rate peak coincides also with a peak in the predicted fumarate 
production. This is exactly what we were looking for - a glimpse of hope that if we 
would rewire the metabolic network we could potentially achieve higher fitness and 
production (fig. 5.2D).</p> 
 
<p>However, it is important to keep in mind that these simulations were done 
by forcing the flux through either ICL or MS one at a time, while the other 
reaction was off. A closer inspection of the flux distributions indicated that the 
network had sufficient plasticity to still find a steady-state solution in the 
absence of one or the other shunt enzymes. This happens because, as it is 
common practice in this type of modeling, the absolute flux bounds through 
each internal node of the system is unconstrained. Some of the solutions 
found seem non-physiological, since they involve drastic increases of fluxes 
that are typically very small in the cell.</p> 
 



 
                                     
<figure id=fig53<img src=images/figures/Model4_5.3.png class=module-figure-
image><figcaption class=module-figure-text><b>Figure	 5.3.</b>	 	<i>The effect of 
both ICL and MS on growth and fumarate production. The x axis is flux through MS 
and the y axis is flux through R_I C L. The color indicates either the growth rate (A) in 
units hr<sup>-1</sup> or fumarate production (B) in units mmol gDW<sup>-1</sup> 
hr<sup>-1</sup>. The circled area in both plots corresponds to the area with the 
highest growth rate. </i></figure> 
                             



             
<p>Therefore, we conducted simulations where flux is forced through both 
reactions at the same time (fig. 5.3). These simulations were all conducted 
under the Night <i>&#916;</i><i>zwf</i> scenario. In plot 3A, the peak growth 
rate occurs where there is a small flux through MS and either a small or 0 flux 
through ICL, which is encircled in both plots. However, the direction of the flux 
through ICL within this optimal region has an effect on fumarate production. If 
ICL is in the reverse direction, fumarate production drops when compared to 
when ICL is off. On the other hand, if ICL is in the forward direction, there is a 
slight increase in production with increasing MS as well. One difference 
between 2A and 3A is that a small forward flux through ICL no longer leads to 
a reduced growth rate when MS also has a small flux. This implies that the 
detrimental effects of a forward flux through ICL when MS is off can be 
mitigated by a flux through MS. The takeaway from this figure is that 
expression of ICL may only be beneficial, in terms of fumarate production if 
MS is also expressed and ICL catalyzes in the forward reaction. A 
thermodynamic analysis of ICL under physiological conditions predicts that it 
will have a Gibbs Free energy (<i>&#916;</i>G) of -8.4 KJ/mol. This suggests 
that the reversibility of ICL will most likely not be the case in such a cell <I>in 
vivo</i>.</p> 
 
<p>We have decided to put this new insight to the test by running dFBA 
simulations over a 24h circadian period (fig. 5.2). Comparisons were 
established for model variations constrained to mimick the following 
genotypes: <i>&#916;</i><i>fumC</i>, 
<i>&#916;</i><i>fumC</i><i>&#916;</i><i>zwf</i> and 
<i>&#916;</i><i>fumC</i><i>&#916;</i><i>zwf</i> expressing the complete 
shunt (<i>&#916;</i><i>fumC</i><i>&#916;</i><i>zwf</i>::MS::ICL). 
Simulations were performed as previously described for figure 5.1 and both 
MS and ICL were modelled as irreversible and left unconstrained, i.e. at any 
given point they are not required to carry a flux. The analysis of these new 
batches of dFBA simulations clearly indicate that, during the day there is no 
difference between the models. But this is only so because during day neither 
MS nor ICL are carrying a flux (not active). During the night, again we see that 
the <i>&#916;</i><i>fumC</i><i>&#916;</i><i>zwf</i> is beneficial compared 
to the <i>&#916;</i><i>fumC</i> alone. But more interesting, we see that the 
glyoxylate shunt on top of the 
<i>&#916;</i><i>fumC</i><i>&#916;</i><i>zwf</i> further boost fumarate 
production.</p> 
 
  
 
                 
             
 
                 
             
         
     



 
 
<figure id=fig54<img src=images/figures/Model6_5.4.png class=module-figure-
image><figcaption class=module-figure-text><b>Figure	 5.4.</b>	 	<i>Some 
caption</i></figure> 
 
<p>When taken together, all the modeling observations here reported indicate that 
the conditional expression of the glyoxylate shunt over a double mutant of 
<i>fumC</i> and <i>zwf</i> would be beneficial. It would lead to an increase in 
fumarate production during the night beyond what we had achieved so far when 
focusing on the native metabolic network alone. And more importantly, this increase 
would be aligned with fitness, hence, stable. Although very promising, this <I>in 
silico</i> result comes with string attached… the timing has to be perfect. And this is 
timing of activity, not expression per se. So how can we time this perfectly? We dived 
into the exploration of the native regulatory network of an organism that has evolved 
to exploit circadian cycles - our very own <i>Synechocystis</i>! If there is a perfect 
promoter out there to control the shunt genes, chance are that <i>Synechocystis</i> 



will have it. And so the search using libraries began… but about this you can read 
more href='/Produce.html#intro3' class='in-text-link' target='_blank'>here</a>.     </p> 
         
<h1>Modeling industrial conditions</h1> 
<p>At the industrial scale, <i><i>Synechocystis</i></i> and other 
cyanobacteria are often grown in large outdoor ponds or in greenhouses [15], 
where natural solar radiation is the primary source of light. This means that 
the cultures are subject to an oscillating light-dark cycle with a period of 24 
hours. Additionally, these cultures must also deal with natural fluctuations in 
light intensity which can be due to a variety of factors including self-shadowing 
of the cells and mixing.</p> 
 
<p>Culturing photoautotrophic cells in a controlled fashion in a laboratory is typically 
done in lab-scale photobioreactors. At the Molecular Microbial Physiology group at 
the University of Amsterdam we had access to Multi-Cultivators (PSI, Czech 
Republic) to carry out the physiological characterization of the strains we developed 
in this project. There they have developed an in-house software package to control 
the many pieces of hardware that surround these photobioreactors (e.g. LED panel, 
online OD measurement, temperature, etc.). PyCultivator, as it is called, is freely 
available at <a class=’in-text-link’ href=’https://gitlab.com/mmp-
uva/pycultivator’>https://gitlab.com/mmp-uva/pycultivator</a>, and while it provides 
one platform for modelling and interacting with these devices, it still requires further 
implementations to tailor it to the purpose of the experiments - here mimicking 
industrial conditions in the lab.</p>                 
 
<p>In order to model the light-dark cycle, we chose a sinusoidal function as 
represented below: 
\[ 
y=\alpha \sin(2 \pi \frac{t}{24} + \Delta t) + \Delta y 
\] 
where <i>y</i> is the light intensity (&#956;E s<sup>-2</sup>) at time <i>t</i> 
(hr). By setting the amplitude (&#945;) and <i>&#916;</i>y (y-offset) 
appropriately, we can simulate cycles with unequal periods of light and dark. 
An example of a 8hr<sup>-1</sup>6hr light-dark cycle with a peak light 
intensity of 120 &#956;E s<sup>-2</sup> is shown <a class=’in-text-link’ 
href=’/Produce.html#char-zwf’>here</a>. Additionally, to avoid potential 
errors, this function was clamped such that the minimum value allowed was 0 
&#956;E s<sup>-2</sup>. </p> 
 
<p>To model the effects of self-shadowing and mixing on the perceived light 
for single cells, we calculate the 2D light distribution of a simulated culture 
within a cylindrical vessel illuminated by an external light source. The 
simulated culture is described by three parameters: (i) the extinction 
coefficient of the culture, ε (L gDW<sup>-1</sup> cm-1), (ii) the biomass 
concentration, C (gDW L<sup>-1</sup>), and (iii) the radius of the vessel, R 
(cm). The values for these three parameters will be used in the fluctuation 
experiments are listed in Table 5.3.</p> 
 



 
 
<figure id=tab53<img src=images/figures/Model7_tab5.3.png class=module-figure-
image><figcaption class=module-figure-text><b>Table	5.3.</b>		<i>Parameter values 
for the fluctuation algorithm</i></figure> 
 
<p>For a specific position within the simulated vessel, given in polar 
coordinates, the perceived light can be calculated using the following equation 
[16]: 
\[ 
I(r, \theta) = I_0 10^{-\epsilon C (\sqrt{R^2-(r \cos(\theta))^2} - r \sin(\theta))} 
\] 
where I0 is the incident light intensity (&#956;E m-2 s-1), and r and θ are the 
polar coordinates of the simulated position. Additionally, we also use the 
following two equations to calculate the average light intensity and the 
minimum light intensity, respectively, within the simulated vessel: 
\[ 
I_{ave}  =  \frac{1}{\pi R^2}\int_{0}^{2\pi}\int_{0}^{R} r I_0 10^{-\epsilon C 
(\sqrt{R^2-(r \cos(\theta))^2} - r \sin(\theta))} dr d\theta \\ 
I_{min}  =  I_0 10^{-\epsilon C 2 R} 
\] 
Using these three parameters and equations, we developed an algorithm 
which returns a list of light intensities that correspond to realistic light 
fluctuations. An outline of this procedure is shown in Algorithm 1.</p> 
 



 
 
<figure id=tab55<img src=images/figures/Model8_5.5.png class=module-figure-
image><figcaption class=module-figure-text><b>Figure	 5.5.</b>	 	<i>Some 
caption</i></figure> 
 
<p>This algorithm was designed such that the average light intensity of all the 
intensities within I<sub>list</sub> never changes during the procedure. This 



constant average is ensured by having uniform separation between intensities 
and then selecting two intensities (I<sub>list</sub>[x], I<sub>list</sub>[y]) in 
each iteration, and changing each one with the same magnitude but in 
opposite directions. </p> 
                     
<p>Since the average light intensity never changes, this means that the initial 
intensity with which I<sub>list</sub> is seeded determines what the average 
will be. Therefore, as shown in lines 1 & 2, we use the calculated 
I<sub>ave</sub> to seed I<sub>list</sub>, assuring that the fluctuations 
correspond to the values of the parameters in Table 5.3. Note that line 2 uses 
python syntax whereby multiplying a list containing a single element by an 
integer, n, creates a list containing n copies of the original element.</p> 
                     
<p>Furthermore, there is no check that I<sub>1</sub> is within the 
appropriate bounds, unlike how I<sub>2</sub> is checked in line 11, because 
the value of I<sub>1</sub> is calculated using the formula in equation 1 given 
a random position within the simulated vessel. Therefore I<sub>1</sub> will 
always be within the appropriate bounds. One scenario to be aware of is 
when either x or y is equal to either the first or last index of I<sub>list</sub>, 
but the other is not. When this occurs, the intensity associated with y needs to 
be changed by a value of either −2<i>&#916;</i>I or −0.5<i>&#916;</i>I, 
depending on whether it is the boundary index or not. However, in practice, it 
is simpler to not let x or y equal a boundary index as this makes it easier to 
stitch multiple I<sub>list</sub>s together throughout an entire 
experiment.</p> 
 
<p>These two models for lighting conditions were then incorporated into the 
in-house software to control the Multi-Cultivators with which we used to 
characterize our strains. Furthermore, these two models can be used in 
conjunction to generate realistic industrial light conditions, exhibiting both 
oscillatory and fluctuating behavior. With these new tools, we are now able to 
characterize our strains in an industrial setting from the comfort of our own 
lab!</p> 
                 
             
         
     
                 
             
         
     
                 
             
         
     
                 
             
         
     
 
 



<h1>Methods</h1> 
<p>FBA was performed using the CBMPy (<a href=”http://cbmpy.sourceforge. net/” 
target=”_blank”>http://cbmpy.sourceforge. net/</a>) package and IBM ILOG CPLEX 
Optimizer by IBM. To simulate the different trophic modes of <i>Synechocystis</i> 
between day and night lighting regimes, we changed the objective function of our 
model to either maximize the reaction R_BiomassAuto in the day, or 
R_BiomassHetero in the dark. The day regime is defined as setting the lower bound 
of light exchange reaction, R_EX_photon_LPAREN_e_RPAREN , to a value of -30 
and the lower bound of the glycogen sink reaction, R_Sink_glycogen, set to 0. The 
night regime has the lower bound of the light reaction set to 0 and lower bound of the 
glycogen reaction set to -0.6816. This value for the glycogen reaction was chosen so 
as to have the same growth rate under both lighting regimes when no other reactions 
are perturbed to allow for ease of comparison. Note that negative values imply 
consumption, whereas positive is production. These definitions for the light and dark 
regimes hold true for all simulations, unless stated otherwise. All reactions mentioned 
here were already present in the original iJN678.</p> 
 
<p>Dynamic FBA (dFBA) simulations were performed using an in-house script which 
tracks the biomass and relevant chemical concentrations via integration between 
FBA calls. The two integrals [2] used were:</p> 
                     
<p>\\[ 
X =   X_{0} e^{\mu \cdot \Delta t} 
\] 
\[ 
C_i =  C_{i0} + \frac{q_{ci}}{\mu} X_0 (1 - e^{\mu \cdot \Delta t}) 
\] 
</p>                     
 
                     
<p>where X is the current biomass concentration (gDW L<sup>-1</sup>), X0 is the 
biomass concentration of the previous step, &#956; is the current growth rate 
(hr<sup>-1</sup>), <i>&#916;</i>t is the time between FBA calls (hr<sup>-1</sup>), 
Ci is the current concentration of chemical i (mmoli L<sup>-1</sup>), Ci0 is the 
previous concentration of chemical i, and qci is the current production rate of 
chemical i (mmoli gDW<sup>-1</sup> hr<sup>-1</sup>). Furthermore, dFBA 
simulations were subject to a sinusoidal light regime with a period of 24 hr by 
constraining the light exchange reaction to the output of a sinusoidal function. To 
avoid simulating the production of light, the sinusoidal function was limited to a 
maximum value of 0. The sinusoidal function had an amplitude of -30 with neither an 
x nor y offset.</p> 
                     
<p>As for simulating growth during the night, previous work has tracked the 
glycogen content during a 24 hour period [13]. This data showed that there was not a 
constant linear consumption rate during the night, so we therefore divided the night 
time glycogen content into three intervals, fit each interval with a linear model and 
used the slope as the consumption rate for that interval. The glycogen data and 
calculated consumption rates are shown in fig. 5.6</p> 
 
 



 
 
<figure id=fig56<img src=images/figures/Model9_5.6.png class=module-figure-
image><figcaption class=module-figure-text><b>Figure	 5.6.</b>	 	<i>The graph of 
glycogen content on the left was taken from Angermayr et al. 2016 [13]. Three night time 
consumption rates were calculated from this data for the intervals shown in the table on the 
rate. In order to calculate these slopes in units appropriate for dFBA, this data was first 
converted from %(mg mgDW −1) to mmol gDW −1. Three different linear models were then 
fitted to the converted data specified by the interval and the consumption rate was taken as 
the slope of the linear model.</i></figure> 
 
<p>All scripts and models used in this project are open source and freely distributed. 
<a href='https://gitlab.com/mmp-uva/fruits.git' class='in-text-link' 
target='_blank'>FRUITS</a> was conducted according to default settings. The 
additions to PyCultivator that we developed in this project have also been added to 
the repository of the Molecular Microbial Physiology group at <a class=’in-text-link’ 
href=’https://gitlab.com/mmp-uva/pycultivator’>https://gitlab.com/mmp-
uva/pycultivator</a> . </p> 
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