

iGEM TU/e 2017 Biomedical Engineering

Eindhoven University of Technology Den Dolech 2, 5612 AZ Eindhoven The Netherlands 2017.igem.org/Team:TU-Eindhoven

Vector Linearization

Where innovation starts

Table of contents

Vector

Linearization

	1		
/	1	Vector Linearization through PCR	3
/	1.1	Materials	3
	1.2	Setup & Protocol	3
	2	(Optional) DpnI digestion	4
	2.1	Materials	4
	2.2	Setup & Protocol	4
	3	(Optional) PCR Purification	5
	4	NanoDrop	5
	5	(Optional) Gel Electrophoresis	5
	6	References & Acknowledgements	5

1 Vector Linearization through PCR

Estimated bench time: 45 minutes

Estimated total time: 5-7 hours (depends on the vector)

Purpose: Preparing a linear vector which can be used in the Gibson Assembly reaction.

When linearizing a vector, you are working with DNA. It is essential to work with gloves at all times to protect your vector from DNase activity.

1.1 Materials

- Autoclaved H₂O
- Bucket with ice
- Pair of primers which yield the necessary overlaps for the insert
- PCR tubes
- Pipettes and tips
- Q5 High-Fidelity 2X Master Mix (high-fidelity polymerase to linearize the vector)
- Thermal cycler
- Vector which is to be linearized
- Vortex

1.2 Setup & Protocol

- Thaw the Q5-HF 2X master mix on ice. If the master mix contains a pellet, briefly vortex or flick the tube until the pellet disappears.
- Set up a PCR with the following reaction components for the vector to be amplified. Add the Q5-HF 2X master mix lastly. Quickly transfer the PCR tube to the thermocycler after adding the polymerase:

Component	Stock concentration	In the PCR tube	Volume to be pipetted (ul)
Plasmid	1 ng/ul	1 ng	1
Forward primer	10 uM	0.5 uM	2.5
Reverse primer	10 uM	0.5 uM	2.5
Q5 High-Fidelity 2X Master Mix	2X	1X	25
H ₂ O			19
Total			50

• Run the following thermal cycling program:

Ingestelde settings thermocyler 2s (naam = IGPCR) 15-6-17:

- 1) 98°C 0:30
- 2) 98°C 0:10
- 3) 56°C − 0:30 4) 72°C − 2:45
- 4) 72 C 2.45
 5) Go back to 2, 2x
- 6) $98^{\circ}C 0.10$
- 7) $61^{\circ}C 0.30$
- 8) $72^{\circ}C 2:45$
- 9) Go back to **6**, 25x
- 10) 72°C 2:00
- 11) 4°C Hold

Step	Temp (°C)	Time (sec.)	Cycles
Initial denaturation	98	120 (2 min.)	1
Denaturation	98	15	35
Annealing	X ¹	20	
Extension	72	30/kb	
Final extension	72	120 (2 min.)	1
Hold	4		

2 (Optional) DpnI digestion

Estimated bench time: 5 minutes + 1 minute per sample

Estimated total time: 1.5 hours

Purpose: Digestion of the template vector from the PCR product mixture. This will remove the number of background colonies which do not carry the desired insert after Gibson Assembly.

2.1 Materials

- 10X CutSmart buffer from New England Biolabs
- Bucket with ice
- Dpnl restriction enzyme
- PCR Product
- Thermal cycler

2.2 Setup & Protocol

• Thaw the 10X CutSmart buffer at room temperature and thaw the DpnI restriction enzyme on ice. Setup the following reaction:

Component	Stock concentration	In the PCR tube	Volume in ul
PCR Product			50
10X CutSmart buffer	10X	1X	5.7
Dpnl	20U/ul	20U	1

¹ The annealing temperature can be calculated for the set of primers using New England Biolabs Tm calculator. An annealing temperature of 3°C lower than the lowest melting temperature was used to increase yields.

Total 2X 1X 56.7	
-------------------------	--

Digest the vector for 1 hour at 37°C. Heat inactivate DpnI for 20 minutes at 80°C

3 (Optional) PCR Purification

Estimated bench time: 45 minutes

Estimated total time: 45 minutes

Purpose: If the PCR product is <90% pure, large volumes of unpurified PCR product could significantly inhibit the Gibson Assembly [1]. PCR purification may be performed to increase the efficiency.

For more information, see our general PCR purification protocol.

4 NanoDrop

Estimated bench time: 5 minutes start-up and 2 minutes per sample Estimated total time: 5 minutes start-up and 2 minutes per sample Purpose: Measuring the concentration of the PCR product which is necessary to set up the Gibson Assembly reaction.

For more information, see our general NanoDrop protocol.

5 (Optional) Gel Electrophoresis

Estimated bench time: 40 minutes

Estimated total time: 1.5 hours

Purpose: Agarose gel electrophoresis may be used to verify the purity of your PCR product. If the product is pure, a single bond will show up during the gel electrophoresis.

For more information, see our general Gel Electrophoresis protocol.

6

References & Acknowledgements

This protocol was based on information from New England Biolabs NEBuilder HiFi DNA Assembly Cloning Kit manual as well as on Integrated DNA Technologies' gBlocks Gene Fragments Cloning Protocols.

[1] New England Biolabs, "NEBuilder HiFi DNA Assembly Master Mix / NEBuilder HiFi DNA Assembly Cloning Kit." [Online]. Available: <u>https://www.neb.com/~/media/Catalog/All-</u> <u>Products/709D232D72C045D2B2B1089A89DC879F/Datacards or</u> <u>Manuals/manualE2621.pdf</u>.