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1 Introduction

T helper cell (TH17) derives from nave CD4+ T cells. It can cells produce interleukin-
17A (IL-17A), IL-17F and IL-22 as their lineage-defining cytokines, and the retinoic acid
receptor-related orphan receptor gamma t (RORγt) transcription factor is considered the
master regulator of this lineage. In addition, naive CD4 + T cells were found to be able
to differentiate into a fourth lineage of (regulatory) T cells, which were called induced
regulatory T (iTreg) cells. iTreg cells are characterized by producing IL-10 and trans-
forming growth factor-b (TGF-β) and highly expressing forkhead box P3 (Foxp3) tran-
scription factor as their master regulator. TH17 cells are pro-inflammatory because they
secret cytokines that promote inflammation, whereas iTreg cells are anti-inflammatory
because their lineage-defining cytokines can reduce the inflammatory response. Due to
the different interation between them,we establish symmetrical and asymmetrical model
to illustrate their function.

2 Modeling Procedure

2.1 Symmetrical mode

We constructed our mathematical model based on known interactions among key molecules
in the differentiation system of TH17 and iTreg cells. For illustrative purposes, we first
consider a symmetrical model in which the lineages of TH17 and iTreg have identical
corresponding interaction types and strengths.
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Figure 1: Symmetrical model without intermediates.

In the symmetrical model (Figure A), TGF-β upregulates both RORγt and Foxp3.
The model includes the autoactivation of both master regulators. Although there is no
evidence for direct autoactivation of RORγt and Foxp3, these relationships in our model
represent known positive feedback loops in their respective pathways. One origin of these
positive feedback loops is the epigenetic modifications observed in the promoter regions
of RORγt and Foxp3 in their respective lineages. These epigenetic modifications recruit
additional chromatin remodeling complexes that further stabilize those modifications and
help to maintain the gene expression, thus forming positive feedback loops. Additionally,
master regulators can enhance their own production by autocrine effects. The symmetric
model also includes the cross-inhibition interactions between Foxp3 and RORγt. Inhi-
bition of Foxp3 by RORγt is supported by the recent discovery that RORγt acts as a
transcriptional repressor of Foxp3 by binding to its promoter. Although a few reports
suggest a functional inhibition of RORγt by Foxp3, the presence of Foxp3 was shown to
have no pronounced effect on the expression of RORγt. Our symmetrical model includes
the inhibition of RORγt by Foxp3, but we relaxed this assumption in our model with
broken symmetry.

on system, we use a generic form of ordinary differential equations (ODEs) that de-
scribe both gene expression and protein interaction networks. Each ODE in our model
has the form:

dX

dt
= βi(F (εiAi)) − Ci (1)

F (εW ) =
1

1 + e−εW
(2)

Wi = α0
i +

n∑
j

αi−>jCj (3)
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i = 1, ..., N (4)

Xi is the activity or concentration of protein i. Xi(t) changes on a time scale =1/ci.
Xi(t) relaxes toward a value determined by the sigmoidal function, F, which has a steep-
ness set by si . The basal value of F, in the absence of any influencing factors, is deter-
mined by voi . The coefficients vj?i determine the influence of protein j on protein i. N
is the total number of proteins in the network.

For example, the pair of ODEs for the first symmetrical model are:

d[RORγt]

dt
= rRORγt(

1

1 + e−αRORγtWRORγt
− [RORγt]) (5)

WRORγt = α0
RORγt+αRORγt−>RORγt[RORγt]+αFoxp3−>RORγt[Foxp3]+αTGFβ−>RORγt[TGFβ]

(6)

d[Foxp3]

dt
= rFoxp3(

1

1 + e−αFoxp3WFoxp3
− [Foxp3]) (7)

WFoxp3 = α0
Foxp3+αFoxp3−>Foxp3[Foxp3]+αRORγt−>Foxp3[RORγt]+αTGFβ−>Foxp3[TGFβ]

(8)
All variables and parameters are dimensionless. One time unit in our simulations

corresponds to approximately 1 hour.
The solution of these ODEs for the basal values, and with [TGF-β] = 0, evolves

to a stable steady state where both RORγt and Foxp3 have a low level of expression
(RORγtlowFoxp3low). This steady state corresponds to a nave CD4 + T cell
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Figure 2: Phase plane for the average cell with [TGF − β] = 0

Figure 2 shows a scenario in which the TGF-β signal triggers the formation of a tri-
stable system. In this particular case, the RORγtlowFoxp3 low state is no longer a stable
steady state, and nave cell, which was previously stabilized in the RORγtlowFoxp3low
state, would differentiate into the RORγthighFoxp3high state, whose basin of attraction
(the white region in Figure 2) contains the nave state of the cell.
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Figure 3: Phase plane for the average cell with [TGF − β] = 0.5 units.

However, cell-to-cell variability can produce other results. The basal settings corre-
spond to the behavior of an average cell, but any particular cell will deviate somewhat
from this average behavior. As consequences of the changing parameter values in any par-
ticular cell, the position of the RORγtlowFoxp3low state changes, the boundaries of the
basins of attractions change, and the fate of the nave cell may change. Figure 3 depicts
three cells in the population that adopt three different fates because of the variability
among them. With a random sample of cells, each of the three differentiated states can
be populated by a significant fraction of cells (Figure 4). Although cell-to-cell variability
does not make large changes in the position of the lowFoxp3low state, it has a dramatic
influence on the basins of attraction of the stable steady states, which determines the
fate of the cell once the differentiation signal is turned on.

Figure 4: Overlaid phase planes and trajectories for three cells adopting distinct fates
and Simulation trajectories for a population of 30 cells on the plane of RORγt and Foxp3.
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2.2 Asymmetrical model after adding two intermediate proteins

we added two intermediate proteins for transmitting TGF-β signals in this symmetrical
model. And we modified our model so that it became asymmetrical, and we incorporated
two other input signals.

Figure 5: Symmetrical model with intermediates.

In this model, we added intermediate proteins between TGF-β and the master regu-
lators. It is known that Smad2, Smad3 and Smad4 mediate the TGF-β induced upreg-
ulation of Foxp3, but the Smad proteins are dispensable for upregulation of RORγt. It
is still unclear how the TGF-β signal is transmitted to RORγt. Thus, in Figure 1B, we
introduce a generalized Smad intermediate between TGF-β and Foxp3 and an unknown
intermediate between TGF-β and RORγt.

2.3 Asymmetrical model after adding external oscillation

The model with broken symmetry also includes IL-17, which is activated by RORγt and
STAT3, and deactivated by Foxp3 and ATRA . As a polarizing signal, IL-6 stimulates
RORγt and IL-17 production, and represses Foxp3 expression through the STAT3 path-
way . Conversely, ATRA upregulates Foxp3, downregulates RORγt, and inhibits IL-17
production . These relations are all included in our model with broken symmetry.
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Figure 6: Asymmetrical model with three input signals: TGF-β, ATRA, and IL-6.

We next considered an asymmetrical model in which the network topology and param-
eter values differ from the symmetrical model. In the model with perfect symmetry, we
assumed that the inhibitions between Foxp3 and RORγt are equally strong. Therefore,
we revised our model by removing the direct inhibition of RORct expression by Foxp3
and adding the inhibition of IL-17 expression by Foxp3.

This revised model, with broken symmetry (Figure 1C, Table 1-last column, and
Figure 3C) shows some new features. First, RORct behaves ultrasensitively in response to
varying [TGF −β] because of RORγt positive (autoregulatory) feedback loop. Secondly,
Foxp3 exhibits multiple saddle-node bifurcations derived from the broken symmetries of
the pitchforks. Interestingly, the four types of stable steady states observed with the
symmetrical model have been retained for Foxp3, and thus for the entire system. In
fact, by varying [TGF − β], it is possible to obtain all three differentiated phenotypes
in significant fractions simultaneously. At low [TGF − β], Foxp3 singlepositive cells are
predicted to be the dominant cell type. As [TGF − β] increases to intermediate or high
levels, the RORct singlepositive cells and the double-positive cells should appear and
coexist.

Our model not only validates existing published data on the coexistence of two or
more phenotypes in mixed T helper cell populations but also predicts that increasing
TGF-b concentration will cause the transformation of Foxp3 single-positive cells into
RORct-expressing cells. Conversely, decreasing TGF-b concentration might result in the
reverse transformation.

3 Discussion

We have chosen to use generic (phenomenological) ODEs instead of a more detailed
kinetic model of the biochemical reaction network because we lack sufficient mechanis-
tic and kinetic information on the molecular interactions in the TH17-iTreg reciprocal-
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differentiation system. To build a detailed biochemical model, based on mass-action or
Michaelis-Menten kinetics, would require us to make many assumptions on the under-
lying mechanism and rate constants with little or no experimental evidence to back up
these assumptions. In such a case, a phenomenological model seems more appropriate to
us.

To account for cell-to-cell variability in a population, we made many simulations of
the system of ODEs, each time with a slightly different choice of parameter values, to
represent slight differences from cell to cell. We assumed that the value of each parameter
conforms to a normal distribution with CV = 0.05 (CV = coefficient of variation = stan-
dard deviation/mean). The mean value that we specified for each parameter distribution
is also referred as the basal value of that parameter (see Table 1). In our bifurcation
analysis of the dynamical system, we consider an imaginary cell that adopts the basal
value for each of its parameters, and we define this cell as the average cell. Note that
none of the cells in our simulated population is likely to be this average cell, because
every parameter value is likely to deviate a little (CV = 5%) from the basal value. Note,
in addition, that our simulations sample a volume of parameter space around the average
cell, thereby probing the sensitivity/robustness of the differentiation process. Because we
are varying all parameters simultaneously and randomly, this procedure is more indica-
tive of robust behavior than standard sensitivity analysis, which involves estimating the
partial derivative of some output property (e.g., steady state level of FoxP3) with respect
to each parameter separately.

In order to simulate the induced differentiation process, we first solved the ODEs
numerically with some small initial values of [RORγt] and [Foxp3] state and with [TGF−
β] = 0 (and, if applicable, other input signals, e.g. IL-6 and ATRA, = 0 as well). After
a short period of time, each simulated cell will find its own, stable RORγtlowFoxp3low
steady state, corresponding to a naive CD4+ T cell. Next, we changed [TGF − β] (and
other input signals, if applicable) to a certain positive value and continued the numerical
simulation. By the end of the simulation, each cell arrives at its corresponding induced
phenotype, which might vary from cell to cell because of the parametric variability of the
population. To simulate the reprogramming effect, the concentration of IL-6 was raised
after the cells were stabilized in the differentiated state. We made the simple definition
that a protein is expressed when its level is greater than 0.5 units.
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Appendix

Table 1: Descriptions and basal values of parameters.

Parameter name Description
Basal value in

symmetrical model
without intermediates

Basal value in
symmetrical model
with intermediates

Basal value in
model with

broken symmetry
γRORγt Relaxation rate of RORγt 1 1 1
γFoxp3 Relaxation rate of Foxp3 1 1 1
σRORγt Steepness of sigmoidal function for RORγt 5 5 7
σFoxp3 Steepness of sigmoidal function for Foxp3 5 5 5
ωoRORγt Basal activation state of RORγt −0.8 −0.8 −0.84

ωoFoxp3 Basal activation state of Foxp3 −0.8 −0.8 −0.92

ωRORγt−>RORγt Weight of autoactivation of RORΓT 1.24 1.2 0.7
ωFoxp3−>RORγt Weight of inhibition on RORγt by Foxp3 −0.4 −0.4 NA
ωFoxp3−>Foxp3 Weight of autoactivation of Foxp3 1.24 1.24 1.28
ωRORγt−>Foxp3 Weight of inhibition on Foxp3 by RORγt −0.4 −0.4 −0.54
ωTGF−β−>RORγt Weight of activation on ORγt by TGF − β 1.2 NA NA
ωTGF−β−>Foxp3 Weight of activation on Foxp3 by TGF − β 1.2 NA NA

γUI Relaxation rate of unknown intermediate (UI) NA 1 1
γSmad Relaxation rate of Smad NA 1 1
σUI Steepness of sigmoidal function for UI NA 10 12
σSmad Steepness of sigmoidal function for Smad NA 10 20
ωoUI Basal activation state of UI NA −0.2 −0.23
ωoSmad Basal activation state of Smad NA −0.2 −0.225

ωUI−>RORγt Weight of activation on RORγt by UI NA 0.62 0.86
ωSmad−>Foxp3 Weight of activation on Foxp3 by Smad NA 0.62 0.68
ωTGF−β−>UI Weight of activation on UI by TGF − β NA 1.2 1
ωTGF−β−>Smad Weight of activation on Smad by TGF − β NA 1.2 1
ωATRA−>RORγt Weight of inhibition on RORγt by ATRA NA NA −0.04
ωATRA−>Foxp3 Weight of activation on Foxp3 by ATRA NA NA 0.035

γIL17 Relaxation rate of IL-17 NA NA 1
σIL17 Steepness of sigmoidal function for IL-17 NA NA 30
ωoIL17 Basal activation state of IL-17 NA NA −0.82

ωFoxp3−>IL17 Weight of inhibition on IL-17 by Foxp3 NA NA −0.8
ωSTAT3−>IL17 Weight of activation on IL-17 by STAT3 NA NA 0.6
ωATRA−>IL−17 Weight of inhibition on IL-17 by ATRA NA NA −0.1

γSTAT3 Relaxation rate of STAT3 NA NA 0.1
σSTAT3 Steepness of sigmoidal function for STAT3 NA NA 10
ωoSTAT3 Basal activation state of STAT3 NA NA −0.4

ωSTAT3−>RORγt Weight of activation on ORγt by STAT3 NA NA 0.2
ωSTAT3−>Foxp3 Weight of inhibition on Foxp3 by STAT3 NA NA −0.1
ωIL6−>STAT3 Weight of activation on STAT3 by IL-6 NA NA 0.6

[IL6] Concentration of IL-6 NA NA C
[ATRA] Concentration of ATRA NA NA C

[TGF − β] Concentration of TGF − β C C C
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