Difference between revisions of "Team:TokyoTech"

Line 62: Line 62:
 
<!-- Project -->
 
<!-- Project -->
 
     <div class="w3-container" id="project" style="margin-top:20px">
 
     <div class="w3-container" id="project" style="margin-top:20px">
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Project  </b><button class="w3-button w3-red w3-padding-large w3-hover-black" style="font-size: 25px" href="https://2017.igem.org/Team:TokyoTech/Project">Read More</button></h1>
+
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Project  </b><a href="https://2017.igem.org/Team:TokyoTech/Project"><button class="w3-button w3-red w3-padding-large w3-hover-black" style="font-size: 25px">Read More</button></a></h1>
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <p>Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.
 
     <p>Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.
Line 72: Line 72:
 
   <!-- Modeling -->
 
   <!-- Modeling -->
 
     <div class="w3-container" id="modeling" style="margin-top:20px">
 
     <div class="w3-container" id="modeling" style="margin-top:20px">
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Modeling  </b><button class="w3-button w3-red w3-padding-large w3-hover-black" style="font-size: 25px" href="https://2017.igem.org/Team:TokyoTech/Project">Read More</button></h1>
+
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Modeling  </b><a href="https://2017.igem.org/Team:TokyoTech/Modeling"><button class="w3-button w3-red w3-padding-large w3-hover-black" style="font-size: 25px">Read More</button></a></h1>
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <p>Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.
 
     <p>Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.
Line 82: Line 82:
 
   <!-- Human Practice -->
 
   <!-- Human Practice -->
 
   <div class="w3-container" id="hp" style="margin-top:20px">
 
   <div class="w3-container" id="hp" style="margin-top:20px">
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Human Practices  </b><button class="w3-button w3-red w3-padding-large w3-hover-black" style="font-size: 25px" href="https://2017.igem.org/Team:TokyoTech/Project">Read More</button></h1>
+
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Human Practices  </b><a href="https://2017.igem.org/Team:TokyoTech/Human_Practices"><button class="w3-button w3-red w3-padding-large w3-hover-black" style="font-size: 25px">Read More</button></h1>
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <p>Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.
 
     <p>Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.
Line 92: Line 92:
 
   <!-- Notebook -->
 
   <!-- Notebook -->
 
     <div class="w3-container" id="notebook" style="margin-top:20px">
 
     <div class="w3-container" id="notebook" style="margin-top:20px">
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Notebook  </b><button class="w3-button w3-red w3-padding-large w3-hover-black" style="font-size: 25px" href="https://2017.igem.org/Team:TokyoTech/Project">Read More</button></h1>
+
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Notebook  </b><a href="https://2017.igem.org/Team:TokyoTech/Notebook"><button class="w3-button w3-red w3-padding-large w3-hover-black" style="font-size: 25px">Read More</button></a></h1>
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <p>Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.
 
     <p>Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.
Line 102: Line 102:
 
   <!-- Team -->
 
   <!-- Team -->
 
     <div class="w3-container" id="team" style="margin-top:20px">
 
     <div class="w3-container" id="team" style="margin-top:20px">
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Team  </b><button class="w3-button w3-red w3-padding-large w3-hover-black" style="font-size: 25px" href="https://2017.igem.org/Team:TokyoTech/Project">Read More</button></h1>
+
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Team  </b><a href="https://2017.igem.org/Team:TokyoTech/Team"><button class="w3-button w3-red w3-padding-large w3-hover-black" style="font-size: 25px">Read More</button></a></h1>
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <p>Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.
 
     <p>Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.

Revision as of 07:16, 1 October 2017

<!DOCTYPE html> Coli Sapiens

Coli Sapiens
John

Overview


Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.


Project


Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.


Modeling


Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.



Notebook


Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.


Team


Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.


John

Sponsers


JASSO

Kuramae Kougyoukai

IDT

Hajime Fujita: All Rights Reserved