Difference between revisions of "Team:Newcastle/Results"

Line 1,381: Line 1,381:
 
<!--- Why was this done? what problem is it addressing? How does it address that problem? How does it fit into the rest of the project? What were the aims for this? --->
 
<!--- Why was this done? what problem is it addressing? How does it address that problem? How does it fit into the rest of the project? What were the aims for this? --->
  
The Sensynova multicellular biosensor platform has been developed to overcome the limitations identified by our team [hyperlink to human practices] that hamper the success in biosensors development. One of these limits regards the lack of modularity and reusability of the various components. Our platform design, based on the expression of three main modules (Detector, Processor and Output) by three E.coli strains in co-culture, allows the switch of possible variances for each module and the production of multiple customised biosensors.
+
<p>The Sensynova multicellular biosensor platform has been developed to overcome the limitations identified by our team [hyperlink to human practices] that hamper the success in biosensors development. One of these limits regards the lack of modularity and reusability of the various components. Our platform design, based on the expression of three main modules (Detector, Processor and Output) by three E.coli strains in co-culture, allows the switch of possible variances for each module and the production of multiple customised biosensors.</p>
[Insert image of modules here]
+
 
This section of the project is based on testing the modularity of the system by replacing the sfGFP output part of the Sensynova platform design with three different output chromoprotein variants; BBa_K1033929 (aeBlue), BBa_K1033925 (spisPink) and BBa_K1033915 (amajLime).
+
<p>[Insert image of modules here]</p>
 +
 
 +
<p>This section of the project is based on testing the modularity of the system by replacing the sfGFP output part of the Sensynova platform design with three different output chromoprotein variants; BBa_K1033929 (aeBlue), BBa_K1033925 (spisPink) and BBa_K1033915 (amajLime).</p>
  
 
<br />
 
<br />

Revision as of 12:12, 13 October 2017

Click to reset page
Our Experimental Results

Hover over elements of the diagram below to see what each part represents.
Click elements of the diagram below to see results for each section of our project.


Looking for Interlab Study
related results? Click below!



Alternatively, click here to see a list of our experiments and results.

Want to learn more about our framework (above)? Head over to our description page!
Biochemcial Adaptor Modules: The Results

Click the headings to see experiments and results
Sarcosine Oxidase (Glyphosate to Formaldehyde)

BioBricks used: BBa_0123456 (New), BBa_7890123 (Team_Name 20XX)

Diagrammatic Overview: This is a caption. This is a caption. This is a caption. This is a caption. This is a caption. This is a caption.

Rationale and Aim
Background Information
Design Stage
Implementation
Characterisation
Conclusions and Future Work
References
Detector Modules: The Results

Click the headings to see experiments and results
Synthetic Promoter Library

BioBricks used: BBa_0123456 (New), BBa_7890123 (Team_Name 20XX)

Diagrammatic Overview: This is a caption. This is a caption. This is a caption. This is a caption. This is a caption. This is a caption.

Rationale and Aim
Background Information
Design Stage
Implementation
Characterisation
Conclusions and Future Work
References
Arsenic Biosensor

BioBricks used: BBa_0123456 (New), BBa_7890123 (Team_Name 20XX)

Diagrammatic Overview: This is a caption. This is a caption. This is a caption. This is a caption. This is a caption. This is a caption.

Rationale and Aim
Background Information
Design Stage
Implementation
Characterisation
Conclusions and Future Work
References
Psicose Biosensor (Paris-Every Collaboration)

BioBricks used: BBa_0123456 (New), BBa_7890123 (Team_Name 20XX)

Diagrammatic Overview: This is a caption. This is a caption. This is a caption. This is a caption. This is a caption. This is a caption.

Rationale and Aim
Background Information
Design Stage
Implementation
Characterisation
Conclusions and Future Work
References
Processor Modules: The Results

Click the headings to see experiments and results
Fim Standby Switch

BioBricks used: BBa_0123456 (New), BBa_7890123 (Team_Name 20XX)

Diagrammatic Overview: This is a caption. This is a caption. This is a caption. This is a caption. This is a caption. This is a caption.

Rationale and Aim
Background Information
Design Stage
Implementation
Characterisation
Conclusions and Future Work
References
Signal Tuners

BioBricks used: BBa_0123456 (New), BBa_7890123 (Team_Name 20XX)

Diagrammatic Overview: This is a caption. This is a caption. This is a caption. This is a caption. This is a caption. This is a caption.

Rationale and Aim
Background Information
Design Stage
Implementation
Characterisation
Conclusions and Future Work
References
Reporter Modules: The Results

Click the headings to see experiments and results
deGFP

BioBricks used: BBa_0123456 (New), BBa_7890123 (Team_Name 20XX)

Diagrammatic Overview: This is a caption. This is a caption. This is a caption. This is a caption. This is a caption. This is a caption.

Rationale and Aim
Background Information
Design Stage
Implementation
Characterisation
Conclusions and Future Work
References
Chromoproteins

BioBricks used: BBa_K2205016 (New),BBa_K2205017 (New),BBa_K2205018 (New), BBa_K1033915 (Uppsala 2013), BBa_K1033925 (Uppsala 2013), BBa_K1033929 (Uppsala 2013)

Diagrammatic Overview: This is a caption. This is a caption. This is a caption. This is a caption. This is a caption. This is a caption.

Rationale and Aim

The Sensynova multicellular biosensor platform has been developed to overcome the limitations identified by our team [hyperlink to human practices] that hamper the success in biosensors development. One of these limits regards the lack of modularity and reusability of the various components. Our platform design, based on the expression of three main modules (Detector, Processor and Output) by three E.coli strains in co-culture, allows the switch of possible variances for each module and the production of multiple customised biosensors.

[Insert image of modules here]

This section of the project is based on testing the modularity of the system by replacing the sfGFP output part of the Sensynova platform design with three different output chromoprotein variants; BBa_K1033929 (aeBlue), BBa_K1033925 (spisPink) and BBa_K1033915 (amajLime).


Background Information
Design Stage
Implementation
Characterisation
Conclusions and Future Work
References