Difference between revisions of "Team:TokyoTech"

Line 48: Line 48:
  
 
     <li><span class="w3-bar-item w3-button w3-hover-white">Modelling</span>  
 
     <li><span class="w3-bar-item w3-button w3-hover-white">Modelling</span>  
     <ul>
+
     <ul style="color: #fff">
 
     <li><a href="https://2017.igem.org/Team:TokyoTech/Model/Model" class="w3-bar-item w3-button w3-hover-white">Model</a></li>
 
     <li><a href="https://2017.igem.org/Team:TokyoTech/Model/Model" class="w3-bar-item w3-button w3-hover-white">Model</a></li>
 
     <li style="color: #fff"><a href="https://2017.igem.org/Team:TokyoTech/Model/Codes" class="w3-bar-item w3-button">Codes</a></li>
 
     <li style="color: #fff"><a href="https://2017.igem.org/Team:TokyoTech/Model/Codes" class="w3-bar-item w3-button">Codes</a></li>

Revision as of 01:25, 30 October 2017

<!DOCTYPE html> Coli Sapiens

iGEM Tokyo Tech
John

Overview


Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.

John

Project


Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.


Modeling


Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.



Notebook


Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.


Team


Gene therapy has been expected in cancer therapy for years. An interesting therapy for cancer using anaerobic bacteria as a carrier has been developed, but after the anaerobic cancer region is diminished, the bacteria cannot stay there anymore. If anti-cancer bacteria can stay in affected area, they promptly respond to cancer recurrence. Co-existence of bacteria and host cells should be quite difficult in our body or human cell culture systems, because bacteria grow so fast. It is important to control bacterial proliferation in them. So, we try to establish a new living system that human cells control the population of bacteria by engineering the both cells by creating two signaling pathways of 1) Bacteria-Mammals and 2) Bacteria-Plants. We expect that this system will lead to a new experimental approach and a new medical therapy. Moreover, we imagine about "A boundary between cellular groups and living organisms" with general public.


John

Sponsers


JASSO

Kuramae Kougyoukai

IDT

Hajime Fujita: All Rights Reserved