Difference between revisions of "Team:Cornell/Model"

 
(5 intermediate revisions by 2 users not shown)
Line 93: Line 93:
 
                 <li class="menu-title"><a href="#">WET LAB</a>
 
                 <li class="menu-title"><a href="#">WET LAB</a>
 
                   <ul>
 
                   <ul>
                     <li><a href="https://2017.igem.org/Team:Cornell/Experiments">FOUNDATIONS</a></li>
+
                     <li><a href="https://2017.igem.org/Team:Cornell/Results">FOUNDATIONS</a></li>
 
                     <li><a href="https://2017.igem.org/Team:Cornell/Demonstrate">DEMONSTRATE</a></li>
 
                     <li><a href="https://2017.igem.org/Team:Cornell/Demonstrate">DEMONSTRATE</a></li>
 
                     <li><a href="https://2017.igem.org/Team:Cornell/Contribution">CONTRIBUTION</a></li>
 
                     <li><a href="https://2017.igem.org/Team:Cornell/Contribution">CONTRIBUTION</a></li>
Line 190: Line 190:
 
                         <p>In order to accurately analyze the transient behavior, we would also need to fully characterize pDawn.  However, we can simply decouple the exact light feedback functions from the model parameters, solving the model first and extrapolating to illumination feedback levels later.</p>
 
                         <p>In order to accurately analyze the transient behavior, we would also need to fully characterize pDawn.  However, we can simply decouple the exact light feedback functions from the model parameters, solving the model first and extrapolating to illumination feedback levels later.</p>
  
                         <p>We modeled the diffusion of hydrogen peroxide through a tank of water, with no bulk fluid flow.  Peroxide enters the tank from one of its corners at a rate of 0.001 moles/s (0.1 M at 10 mL/s).  The dialysis tubing membrane was assumed to freely pass peroxide and completely block bacteria.  Peroxide is degraded according to first order kinetics, with a rate constant of 2.4E7 s-1, and the concentration of catalase was held constant [2].  The effect of the plant itself was ignored, and the plant roots were modeled as water.  We also started with an initial peroxide concentration in the tank of 0.1 M, to examine the speed at which it approached steady state.
+
                         <p>We modeled the diffusion of hydrogen peroxide through a tank of water, with no bulk fluid flow.  Peroxide enters the tank from one of its corners at a rate of 0.001 moles/s (0.1 M at 10 mL/s).  The dialysis tubing membrane was assumed to freely pass peroxide and completely block bacteria.  Peroxide is degraded according to first order kinetics, with a rate constant of 2.4<sup>7</sup> s<sup>-1</sup>, and the concentration of catalase was held constant [2].  The effect of the plant itself was ignored, and the plant roots were modeled as water.  We also started with an initial peroxide concentration in the tank of 0.1 M, to examine the speed at which it approached steady state.
 
                         </p>
 
                         </p>
  
Line 199: Line 199:
 
                         </div>
 
                         </div>
  
                         <p>The simulation results show that we can indeed reach a steady state concentration in the root area, and that this concentration depends on the enzyme concentration. This relationship is sigmoidal; on a semi-log graph, the linear region ranges between 10-7 mM and 10-6 mM of catalase concentration (Figure 1,2).  The time required to approach steady state is reasonably short, at around 45 minutes (Figure 3).  </p>
+
                         <p>The simulation results show that we can indeed reach a steady state concentration in the root area, and that this concentration depends on the enzyme concentration. This relationship is sigmoidal; on a semi-log graph, the linear region ranges between 10<sup>-7</sup> mM and 10<sup>-6</sup> mM of catalase concentration (Figure 1,2).  The time required to approach steady state is reasonably short, at around 45 minutes (Figure 3).  </p>
  
 
                         <div class = "image-wrapper">
 
                         <div class = "image-wrapper">
Line 209: Line 209:
  
 
                           <img class = "img-responsive" src="https://static.igem.org/mediawiki/2017/f/fd/T--Cornell--transientstate.png" alt= "modelfigure3">
 
                           <img class = "img-responsive" src="https://static.igem.org/mediawiki/2017/f/fd/T--Cornell--transientstate.png" alt= "modelfigure3">
                           <p>Figure 3:  Mean peroxide concentration around the plant vs. time for 6 *10-10 M of catalase</p>
+
                           <p>Figure 3:  Mean peroxide concentration around the plant vs. time for 6 *10<sup>-10</sup> M of catalase</p>
 
                         </div>
 
                         </div>
  
Line 216: Line 216:
 
                         <div class = "image-wrapper">
 
                         <div class = "image-wrapper">
 
                           <img class = "img-responsive" src="https://static.igem.org/mediawiki/2017/6/67/SSPeroxideConcVaryingCatalase.png" alt= "modelfigure4">
 
                           <img class = "img-responsive" src="https://static.igem.org/mediawiki/2017/6/67/SSPeroxideConcVaryingCatalase.png" alt= "modelfigure4">
                           <p>Figure 4: Distribution of steady state peroxide concentration across bacteria-plant system, varied by amount of catalase enzyme present (A: 1E-8 mM, B: 1E-9 mM, C: 1E-10 mM, D: 6E-10 mM, E: 6E-11 mM)</p>
+
                           <p>Figure 4: Distribution of steady state peroxide concentration across bacteria-plant system, varied by amount of catalase enzyme present (A: 10<sup>-8</sup> mM, B: 10<sup>-9</sup>mM, C: 10<sup>-10</sup> mM, D: 6*10<sup>-10</sup> mM, E: 6*10<sup>-11</sup> mM)</p>
  
 
                           <div class="center"><embed width="38%" height="264" src="https://static.igem.org/mediawiki/2017/2/27/T--Cornell--transientmp4.mp4"></div>
 
                           <div class="center"><embed width="38%" height="264" src="https://static.igem.org/mediawiki/2017/2/27/T--Cornell--transientmp4.mp4"></div>
                           <p>Figure 5: Distribution of peroxide concentration across bacteria-plant system over time for a steady-state catalase concentration of 6 *10<sup>-10 M.</sup></p>
+
                           <p>Figure 5: Distribution of peroxide concentration across bacteria-plant system over time for a steady-state catalase concentration of 6 *10<sup>-10 </sup> M.</p>
 
                         </div>
 
                         </div>
  

Latest revision as of 21:45, 30 October 2017

<!DOCTYPE html> Model