Difference between revisions of "Team:BostonU/Experiments"

Line 261: Line 261:
 
<p class="body-type mainwrap"><img src="https://static.igem.org/mediawiki/2017/4/46/T--BostonU--BxbIRecombFig1.png" width=50%></img>For this set of experiments, we used a BxbI recombinase in the pBEST plasmid. We exchanged the deGFP with the BxbI sequence, achieving a constitutive BxbI plasmid. The reporter we used was a promoter inversion promoter. In the presence of BxbI, the formerly inverted promoter should be moved into the proper orientation, allowing for deGFP expression. </p>
 
<p class="body-type mainwrap"><img src="https://static.igem.org/mediawiki/2017/4/46/T--BostonU--BxbIRecombFig1.png" width=50%></img>For this set of experiments, we used a BxbI recombinase in the pBEST plasmid. We exchanged the deGFP with the BxbI sequence, achieving a constitutive BxbI plasmid. The reporter we used was a promoter inversion promoter. In the presence of BxbI, the formerly inverted promoter should be moved into the proper orientation, allowing for deGFP expression. </p>
 
<p class="body-type mainwrap">&nbsp;</p>
 
<p class="body-type mainwrap">&nbsp;</p>
<p class="body-type mainwrap"><img src="https://static.igem.org/mediawiki/2017/7/77/T--BostonU--Cre.png" width=50%></img>We ran a cell free reaction with the constitutive BxbI plasmid added to the reporter plasmid. Again, this only showed background expression as compared to a reaction containing no DNA. A reaction containing the constitutive BxbI plasmid added to the constitutive deGFP showed fluorescence at about 66% compared to a reaction with just the constitutive deGFP. View these results <a href="#">here</a>.  We believe that this is indicative that both the deGFP and BxbI recombinase are being transcribed and translated. Because of limited machinery, the deGFP expression would be decreased to allow for BxbI expression. Future work will be aimed at proving this hypothesis. In addition, a literature search revealed that only a small subset of previously tested recombinases were shown to have functionality in cell free [3]. Future work will also aim at discovering which recombinase show the best functionality in our cell free system.</p>
+
<p class="body-type mainwrap"><img src="https://static.igem.org/mediawiki/2017/7/77/T--BostonU--Cre.png" width=30%></img>We ran a cell free reaction with the constitutive BxbI plasmid added to the reporter plasmid. Again, this only showed background expression as compared to a reaction containing no DNA. A reaction containing the constitutive BxbI plasmid added to the constitutive deGFP showed fluorescence at about 66% compared to a reaction with just the constitutive deGFP. View these results <a href="#">here</a>.  We believe that this is indicative that both the deGFP and BxbI recombinase are being transcribed and translated. Because of limited machinery, the deGFP expression would be decreased to allow for BxbI expression. Future work will be aimed at proving this hypothesis. In addition, a literature search revealed that only a small subset of previously tested recombinases were shown to have functionality in cell free [3]. Future work will also aim at discovering which recombinase show the best functionality in our cell free system.</p>
  
  
Line 274: Line 274:
 
<p class="body-type mainwrap">&nbsp;</p>
 
<p class="body-type mainwrap">&nbsp;</p>
  
<p class="body-type mainwrap">With the desire to create fusion proteins in mind, our second region consisted of 30-nt sourced from within our lab and verified to work in dozens of constructs. This would allow us to tag the recombinases with fluorescent proteins and track their synthesis overtime. At the end of our time working on the iGEM project, we were working on characterizing the effects of adding these linker regions to the pBEST plasmid’s activity in cell free. Once this is verified, we could tag our recombinase proteins and verify that they are being expressed in the cell free system. From here we can better troubleshoot our system and gain functional recombinases in cell free. <img src="https://static.igem.org/mediawiki/2017/f/f4/T--BostonU--AddLinkerFig1.svg" width=30%></img></p>
+
<p class="body-type mainwrap">With the desire to create fusion proteins in mind, our second region consisted of 30-nt sourced from within our lab and verified to work in dozens of constructs. This would allow us to tag the recombinases with fluorescent proteins and track their synthesis overtime. At the end of our time working on the iGEM project, we were working on characterizing the effects of adding these linker regions to the pBEST plasmid’s activity in cell free. Once this is verified, we could tag our recombinase proteins and verify that they are being expressed in the cell free system. From here we can better troubleshoot our system and gain functional recombinases in cell free. <img src="https://static.igem.org/mediawiki/2017/f/f4/T--BostonU--AddLinkerFig1.svg" width=50%></img></p>
 
<p class="body-type mainwrap">&nbsp;</p>
 
<p class="body-type mainwrap">&nbsp;</p>
  

Revision as of 06:31, 31 October 2017

EXPERIMENTS