Difference between revisions of "Team:INSA-UPS France/test"

 
(279 intermediate revisions by 3 users not shown)
Line 5: Line 5:
  
 
<html>
 
<html>
<style>
 
 
main{
 
  position:relative;
 
  overflow: auto;
 
  height:100%;
 
}
 
 
.main_content{
 
  position:fixed;   
 
  top:90px;
 
  right:0px;
 
  left:0px;
 
  bottom:0px;
 
  overflow:auto;
 
  background-image: linear-gradient(45deg, #4296c1 0%, #e4efe9 100%);
 
}
 
.middle_container{ 
 
  padding-bottom: 80px;
 
}
 
.section_container{
 
  width:90%;
 
  min-height:100%;
 
  margin:0px auto;
 
  position:relative;
 
}
 
@media screen and (max-width: 900px){
 
    .section_container{
 
      width:100%;
 
    }
 
  }
 
section{
 
  background-color: rgba(255,255,255,0.2);
 
  padding:3% 10%;
 
  text-align: justify;
 
  border-radius:20px;
 
  position:relative;
 
  margin-top:100px;
 
}
 
 
/*for now*/
 
sup{
 
  display: none;
 
}
 
</style>
 
 
 
<main class="site-main">
 
<main class="site-main">
 
   <div class="main_content">
 
   <div class="main_content">
Line 61: Line 15:
 
       <img style="width:25%;min-width: 260px; position:absolute;right:0;top:-200px; " src="https://static.igem.org/mediawiki/2017/e/e3/T--INSA-UPS_France--design_croco.png" alt="">
 
       <img style="width:25%;min-width: 260px; position:absolute;right:0;top:-200px; " src="https://static.igem.org/mediawiki/2017/e/e3/T--INSA-UPS_France--design_croco.png" alt="">
 
       <p style="margin-top: 50px;">
 
       <p style="margin-top: 50px;">
         Building a synthetic consortium able to deal with the cholera issue led us to investigate on different communication pathways: we had to <b>sense</b> <i>Vibrio cholerae</i> in its natural environment and based on this sensing we had to activate, through <b>transmission</b>, a <b>response</b>: the production of a killing molecule. Moreover, all those actions had to be inserted in the right cellular chassis in order to optimize the system.  
+
         We created a synthetic consortium and demonstrated the power of such approach to fight against cholera disease. Our synthetic consortium involves three microorganism: i) an engineered <i>E. coli</i> to mimic<i> V. cholerae</i> ii) an engineered </i>V. harveyi</i> to sense the presence of the engineered <i>E. coli</i> and in repsonse to produce diacetyl iii) a yeast <i>P. pastoris</i> engineered to detect diacetyl and in response to produce antibacterial peptides (AMPs) in order to trigger lysis of<i> Vibrio </i> species. Here is presented a closer view of the molecular details for each micro-organism as well as an overview of our experimental plan.
      </p>
+
 
      <p>
+
        To wipe out cholera from water, we decided to build a sense-transmit-respond system reacting to <i>V. cholerae</i> and leading to its death.
+
 
       </p>
 
       </p>
 
     </section>
 
     </section>
Line 76: Line 28:
 
     <section>
 
     <section>
 
       <h1 style="text-align: left;">Organisms</h1>
 
       <h1 style="text-align: left;">Organisms</h1>
       <h2><i>E. coli</i></h2>
+
       <h2><i>Escherichia coli</i></h2>
 
       <p>
 
       <p>
         We chose to mimic <i>V. cholerae</i> using <i>E. coli</i> that we modified to produce the CAI-1 of <i>V. cholerae</i>, using the enzyme responsible for its production. <i>E. coli </i> has two main advantages: it is a good molecular biology model and it produces no endogen CAI-1.
+
         For safety reasons, the bacteria gram negative <i>E. coli</i> was chosen to mimic <i> V. cholerae</i>. <i>E. coli</i> is an easy organism to deal with, especially as it is well documented, easy to transform with exogenous DNA and easy to culture. The strain K-12 MG1655 was transformed with a plasmid allowing expression of the protein CqsA from<i> V. cholerae</i>, the enzyme responsible for the synthesis of CAI-1. However, as a proof of concept, we also transformed our <i>E. coli</i> strain with the gene coding for the CqsA of </i>V. harveyi</i>, a non-pathogen strain, producing the molecule C8-CAI-1 (an analogue of the<i> V. cholerae</i> CAI-1)<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472/" target="_blank">1</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/15466044/" target="_blank">2</a></sup>. C8-CAI1 is a carbohydrate chain based displaying an hydroxyl group on carbon 3 and ketone function on carbon 4. The CqsA synthetase from </i>V. harveyi</i> produce C8-CAI-1 from endogenous <i>E. coli</i> (S)-adenosylmethionine (SAM) and octanoyl-coenzyme. <i> cqsA </i> from both <i>V. harveyi</i> and <i> V. cholerae</i> were placed under the pLac promoter and we used plasmid pSB1C3 to maintain compatibility with the iGEM registry.
      </p>
+
 
 +
 
 +
 
 +
 
 +
</p>
 
       <img src="https://static.igem.org/mediawiki/2017/f/fc/T--INSA-UPS_France--design_plasmid-coli.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
 
       <img src="https://static.igem.org/mediawiki/2017/f/fc/T--INSA-UPS_France--design_plasmid-coli.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
 
       <p style="margin-left:15%;">
 
       <p style="margin-left:15%;">
        The psB1C3 plasmid was chosen for iGEM compatibility.
+
      </p>
      </p>
+
 
     </section>
 
     </section>
  
Line 91: Line 46:
 
       <h2><i>V. harveyi</i></h2>
 
       <h2><i>V. harveyi</i></h2>
 
       <p>
 
       <p>
         <i>V. harveyi</i> has all the assets to be a good sensor for <i>V. cholerae</i>: it possesses its own pathway of detection of C8-CAI-1, an analogue of CAI-1. A single point mutation allows <i>V. harveyi</i>: to detect <i>V. cholerae</i>’s molecule CAI-1<sup>1</sup>. Moreover, the strain that we are using, JMH626, has been deleted for the enzyme responsible of the production and detection of other quorum sensing molecules, making it a specific sensor of CAI-1<sup>2</sup>. However it cannot be used as  the effector because of its physiological proximity to <i>V. cholerae</i>. Thus we supposed that the production of antimicrobial peptides aimed at<i> V. cholerae</i> would be lethal to it.
+
         <i>V. harveyi</i> is a gram negative bacteria, well studied for its quorum sensing system. This bacteria displays its own pathway for the detection of C8-CAI-1. The gene <i>cqsS</i> encodes for the sensor C8-CAI-1 and a single point mutation in its sequence allows <i>V. harveyi</i> to detect both C8-CAI-1 and CAI-1 from <i> V. cholerae</i>. To avoid auto-activation of <i>V. harveyi</i>, we used the JMH626 strain, in which the <i> cqsA </i> gene, coding the enzyme involved in the production C8-CAI-1, has been deleted. Furthermore, additional genes <i>luxS</i> and <i>luxS</i> coding for key enzymes involved in the expression of other quorum sensing molecules have been deleted. All these mutations make the strain JMH626 specific for detecting non-endogenous C8-CAI-1. <i>V. harveyi</i> is also able to regulate the activation of genes under the control of the promoter pQRR4, in a C8-CAI-1 concentration dependent manner <sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472/" target="_blank">1</a></sup>. At high C8-CAI-1 concentration, the promoter is inactivated. Thus we added the inverter tetR/pTet to activate a gene of interest in presence of C8-CAI-1. The gene of interest is <i>als</i> that encodes for the acetolactate synthase (Als). this enzyme synthetized diacetyl from pyruvate<sup><a href="http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=vhr00650&keyword=diacetyl" target="_blank">3</a></sup>. Diacetyl is our ransmitter molecule (Figure 1).
 
       </p>
 
       </p>
 
       <img src="https://static.igem.org/mediawiki/2017/f/fa/T--INSA-UPS_France--design_plasmid-harveyi.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
 
       <img src="https://static.igem.org/mediawiki/2017/f/fa/T--INSA-UPS_France--design_plasmid-harveyi.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
 
       <p style="margin-left:15%;">
 
       <p style="margin-left:15%;">
        The pBBR1MCS-4 broad host range plasmid was chosen so we can transfer the system into <i>V.harveyi</i> using a conjugation method.
+
      The pBBR1MCS-4<sup><a href="http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=vhr00650&keyword=diacetyl" target="_blank">4</a></sup>, a broad host range plasmid, was chosen to allow the transfer of the system into <i>V. harveyi</i> by conjugation (i.e. this is the only way to modify the <i>V. harveyi</i> chassis).  
 
       </p>
 
       </p>
 +
<p style="margin-left:15%;">
 +
In conclusion, we designed a <i>V. harveyi</i> strain enable to detect both exogenous CAI-1 or C8-CAI-1, and to produce diacetyl as a molecular response.
 +
  </p>
 
     </section>
 
     </section>
 
      
 
      
Line 102: Line 60:
 
       <h2><i>P. pastoris</i></h2>
 
       <h2><i>P. pastoris</i></h2>
 
       <p>
 
       <p>
         Recognized as a great protein producer and secretor, <i>P. pastoris</i> has already been used to produce a wide range of AMPs<sup>3,4</sup>. Furthermore, the diacetyl/Odr-10 system has been described as a useful tool for prokaryotic/eukaryotic communication<sup>5</sup>.
+
         <i>V. harveyi</i> cannot not be used as the effector since production of antimicrobial peptides (AMPs) is lethal for <i> Vibrio </i> species. <i>P. pastoris</i> is a yeast commonly used in academic laboratories and industry for its high potential to produce protein. In addition, yeasts were previously described to produce a wide range of AMPs <sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494115/
 +
" target="_blank">5</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/23624708" target="_blank">6</a></sup>. Finally, a system allowing efficient communication between yeast and prokaryotes has already been decribed i.e. the diacetyl-dependant Odr-10 receptor system<sup><a href="https://2013.igem.org/Team:SCUT" target="_blank">7</a></sup>. This system allows the expression of targets genes under the control of pFUS1 via the Ste12 pathway (Figure 2). For all these reason, we thus chose <i>P. pastoris</i>. We used the constitutive pGAP promoter to express the receptor Odr-10 in <i>P. pastoris</i>
 +
 
 
       </p>
 
       </p>
 
       <img src="https://static.igem.org/mediawiki/2017/6/67/T--INSA-UPS_France--design_plasmid-pichia.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
 
       <img src="https://static.igem.org/mediawiki/2017/6/67/T--INSA-UPS_France--design_plasmid-pichia.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
       <p style="margin-left:15%;">
+
        
      The pPICZ&alpha; plasmid was chosen because of its &alpha;-factor and its homology sequence allowing it to integrate in a targeted zone in its genome. It is recognized as a good plasmid for protein production in <i>P. pastoris</i>.
+
<p>
      </p>
+
To kill<i> V. cholerae</i>, we looked for a new and innovative antibiotic solution to limit the risk of acquired-resistance. We decided to use AMPs, that are small membrane disrupting molecules toxic for a large panel of microorganisms<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/27837316" target="_blank">8</a></sup>. Here we selected AMPs from crocodiles. Crocodiles live in harsh environment and are known to possess an impressive defence system, that allows them to catch very few disease and antimicrobial peptides are part of it<sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490821/" target="_blank">9</a></sup>. We focused on 3 different AMPs described to have the best efficiency against <i>V. cholerae</i>. Those AMPs are Leucrocin I<sup><a href="http://www.sciencedirect.com/science/article/pii/S0145305X10003071?via%3Dihub" target="_blank">10</a></sup>, D-NY15<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/24192554" target="_blank">11</a></sup> and cOT2<sup><a href="http://www.sciencedirect.com/science/article/pii/S0005273617300433" target="_blank">12</a></sup>. Leucrocine I possess one cationic charge for 7 amino acids. D-NY15 is its optimized counterpart with 4 cationic charges and a sequence of 15 amino-acid long. Finally, cOT2 is 29 amino acid long and possesses 6 cationic charges. These AMPs were placed under control of the pGAP constitutive promoter for preliminary tests and under pFUS1 promoter to promote their expression in response to diacetyl. The genetic constructions were inserted into the  integrative pPICZα plasmid i.e. a good plasmid for protein production. The signal peptide α-factor was fused to the AMPs to allow for secretion of the peptides.
 +
</p>
 +
  <p style="margin-left:15%;">
 +
The action of these AMPs is the last event of our synthetic consortium.
 +
</p>
 
     </section>
 
     </section>
  
 
     <style>
 
     <style>
    /* ASIDE NAV */
+
      /* ASIDE NAV */
 
       .left_container{
 
       .left_container{
 
         width:35%;
 
         width:35%;
        /*position:absolute;
 
        top:400px;
 
        padding:0;
 
        display:inline-block;*/
 
 
         float:left;
 
         float:left;
 
       }
 
       }
Line 131: Line 91:
 
     <div class="left_container">
 
     <div class="left_container">
 
     <div class="left_container__inside">
 
     <div class="left_container__inside">
       <img src="https://static.igem.org/mediawiki/2017/a/a8/T--INSA-UPS_France--design_blupuriline.png" alt="">
+
       <img style="height:100%;" src="https://static.igem.org/mediawiki/2017/a/a8/T--INSA-UPS_France--design_blupuriline.png" alt="">
 
     </div>
 
     </div>
 
     </div>
 
     </div>
Line 142: Line 102:
 
     section ul{
 
     section ul{
 
       list-style-position: inside;
 
       list-style-position: inside;
      font-family: 'Merriweather', serif;
 
      font-size:1.5vw;
 
      font-weight: 300;
 
    }
 
    .modules_design h2{
 
        font-size: 3vw;
 
    }
 
    .modules_design p{
 
      font-size: 1.5vw;
 
 
     }
 
     }
 +
 
     .invisible-image{
 
     .invisible-image{
 
       visibility: hidden;
 
       visibility: hidden;
Line 164: Line 116:
 
       <h2 style="color:#ae3d3d;">Sense</h2>
 
       <h2 style="color:#ae3d3d;">Sense</h2>
 
       <p>
 
       <p>
        We chose to take advantage of the intraspecies quorum sensing of <i>V. cholerae</i>: the <b>CAI-1/CqsS system</b>. To mimic this pathway in our laboratory, we had to both produce in vivo the CAI-1 molecule  in a bacteria strain and express the CqsS receptor in an other one.  
+
          To create our sensor strain, we took advantage of the intraspecies quorum sensing of <i>V. cholerae</i>: the <b>CAI-1/CqsS system</b>. To mimic this pathway, we made an <i>E. coli</i> producer strain of quorum-sensing molecules (i.e. CAI-1 and C8-CAI-1) and we express a modified CqsS* receptor in <i>V. harveyi</i> that can sense both CAI-1 and C8-CAI-1.
      </p>
+
      <p>
+
        The CAI-1 producing system is inducible in order to avoid toxicity problems. The fact that <b>CqsS*</b> can detect both CAI-1 and C8-CAI-1 led us to choose <i>V. harveyi</i> <b>cqsA gene</b> (Vh-cqsA), instead of <i>V. cholerae</i> gene, that produces C8-CAI-1 for safety reasons.<sup>1</sup>
+
 
       </p>
 
       </p>
 +
 
 
     </section>
 
     </section>
     <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt="">
+
     <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt="" style="width:30%;">
 
     <section class="modules_design" style="border:solid 5px #468789;margin-top:0px;margin-bottom: 0px;">
 
     <section class="modules_design" style="border:solid 5px #468789;margin-top:0px;margin-bottom: 0px;">
 
       <h2 style="color:#468789;">Transmit</h2>
 
       <h2 style="color:#468789;">Transmit</h2>
 
       <p>
 
       <p>
        <i>V. harveyi</i> has the natural pathway leading to the activation or inactivation of <b>pqrr4</b>. At high CAI-1 concentration the promoter is inactivated, thus we needed an inverter, <b>tetR/pTet</b> allowed us to activate the als gene that produces diacetyl at high CAI-1 concentration:
+
      In response to quorum sensing molecules, the sensor strain activates the pathway leading to the inhibition of the <i>als</i> gene placed under the control of <b>pQRR4 promoter</b>. The signal is inverted by the <b>tetR/pTet</b> system to trigger <i>als</i> gene expression and thus diacetyl production. Diacetyl in turn activates the <b>Odr-10 receptor</b> implemented in the yeast <i>Pichia pastoris</i>.
 
       </p>
 
       </p>
       <ul>
+
        
        <li>
+
   
           If <b>CAI-1</b> is present in high concentration, pqrr is repressed, so TetR no longer inhibits pTet. Thus, the als gene is expressed, producing <b>>diacetyl</b>.</li>
+
           </section>
        <li>
+
          If there is <b>no CAI-1</b>, TetR is produced and repress pTet which inhibits the <b>als gene</b>, ergo diacetyl production.
+
 
+
        </li>
+
      </ul>
+
      <p>
+
        We chose to use the <b>diacetyl/Odr-10 binding receptor system</b>, that is known to activate gene expression on yeasts.
+
      </p>
+
      <p>
+
        The constitutive <b>pGAP</b> promoter allows the system to always express the <b>Odr-10 receptor</b> and thus be sensible to diacetyl at any time.
+
      </p>
+
    </section>
+
 
     <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt=""  style="width:30%;">
 
     <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt=""  style="width:30%;">
 
     <section class="modules_design" style="border:solid 5px #f37b6f;margin-top:0px;margin-bottom: 0px;">
 
     <section class="modules_design" style="border:solid 5px #f37b6f;margin-top:0px;margin-bottom: 0px;">
 
       <h2 style="color:#f37b6f;">Respond</h2>
 
       <h2 style="color:#f37b6f;">Respond</h2>
 
       <p>
 
       <p>
        Once the Odr-10 receptor has sensed diacetyl, <b>pFUS</b> is activated and it triggers the Ste12 pathway. Then, the production of antimicrobial peptides (AMP) can start. In order for the cells to excrete the peptides, an <b>&alpha;-factor</b> is needed.
+
    Once Odr-10 receptor sensed diacetyl, the <b>pFUS1</b> promoter triggers expression of AMPs. After excretion, these AMPs can disrupt the membrane of the <i>Vibrio</i> species
 
       </p>
 
       </p>
 +
 
     </section>
 
     </section>
 
     <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt=""  style="width:30%;">
 
     <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt=""  style="width:30%;">
Line 213: Line 152:
 
       </p>
 
       </p>
 
       <ul>
 
       <ul>
         <li>C8-CAI-1 &amp; CAI-1 NMR</li>
+
         <li>Measurement of C8-CAI-1 & CAI-1in supernateant by NMR</li>
         <li>Bioluminescence</li>
+
         <li>Bioluminescence assay</li>
         <li>MS</li>
+
         </ul>
      </ul>
+
 
     </section>
 
     </section>
  
Line 228: Line 166:
 
       </p>
 
       </p>
 
       <ul>
 
       <ul>
         <li>Conjugation test with fluorescence</li>
+
         <li> Conjugation test using a plasmid expressing RFP</li>
         <li>CqsS* pathway test with fluorescence</li>
+
         </ul>
      </ul>
+
 
       <p>
 
       <p>
         diacetyl production
+
         Diacetyl production
 
       </p>
 
       </p>
 
       <ul>
 
       <ul>
         <li>diacetyl NMR (<i>E.coli</i> and <i>V. harveyi</i>)</li>
+
         <li> Measurement by NMR of diacetyl in supernateant of <i> E. coli</i> and </i>V. harveyi</i> producing strains </li>
         <li>pTet characterization in <i>V. harveyi</i> by reporter gene</li>
+
         </ul>
      </ul>
+
 
     </section>
 
     </section>
 
      
 
      
Line 244: Line 180:
 
       <h2><i>P. pastoris</i></h2>
 
       <h2><i>P. pastoris</i></h2>
 
       <p>
 
       <p>
        Antimicrobial peptides (AMP)
+
          Diacetyl detection
 
       </p>
 
       </p>
 
       <ul>
 
       <ul>
         <li>AMP activity: growth tests, etc</li>
+
         <li> <i> In vivo </i> functionality of pGAP using RFP reporter system </li>
         <li>AMP purification</li>
+
         <li><i> In vivo </i> functionality of ODR10/pFUS1 system  test using RFP reporter system </li>
 
       </ul>
 
       </ul>
 
       <p>
 
       <p>
         diacetyl detection
+
         Antimicrobial peptides (AMPs)
 
       </p>
 
       </p>
 
       <ul>
 
       <ul>
         <li>pFus pathway test with fluorescence</li>
+
         <li>Verification of AMP genes expression by RT-PCR</li>
         <li>etc</li>
+
         <li>Verification of AMPs activity by toxicity assay</li>
 
       </ul>
 
       </ul>
 
     </section>
 
     </section>
Line 263: Line 199:
 
   </div>
 
   </div>
  
  <style>
 
 
footer{
 
  position:relative;
 
  text-align:center;
 
  margin-top:20px;
 
  background: #323537;
 
  width:100%;
 
}
 
 
/* CONTACT ICONS */
 
 
.icons{ 
 
  display:inline-block;
 
  margin:40px 0;
 
 
 
}
 
 
.icons > a{
 
  color:black;
 
  margin:10px;
 
  text-shadow:2px 2px 0px white;
 
}
 
 
#fbIcon:hover{
 
  color:#3b5998;
 
  text-shadow:2px 2px 0 #000000;
 
}
 
 
#twitterIcon:hover{
 
  color:#55acee;
 
  text-shadow:2px 2px 0 #000000;
 
}
 
 
#contactIcon:hover{
 
  color:#e5e5e5;
 
  text-shadow:2px 2px 0 #000000;
 
}
 
#instaIcon:hover{
 
  color:#8a3ab9;
 
  text-shadow:2px 2px 0 #000000;
 
}
 
 
/* SPONSORS IMG */
 
 
.footer_sponsors img{
 
  max-height:50px;
 
  display:inline-block;
 
  margin:10px;
 
  opacity:0.5;
 
}
 
.footer_sponsors img:hover{
 
  opacity:1;
 
}
 
 
</style>
 
 
   <footer>
 
   <footer>
 
      
 
      
Line 337: Line 216:
 
       <a href="https://www.veolia.com/en"><img src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--Logo_veolia.png" alt=""></a>
 
       <a href="https://www.veolia.com/en"><img src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--Logo_veolia.png" alt=""></a>
 
       <a href="https://www.france-science.org/-Homepage-English-.html"><img src="https://static.igem.org/mediawiki/2017/1/1a/T--INSA-UPS_France--Logo_ambassade.jpg" alt=""></a>
 
       <a href="https://www.france-science.org/-Homepage-English-.html"><img src="https://static.igem.org/mediawiki/2017/1/1a/T--INSA-UPS_France--Logo_ambassade.jpg" alt=""></a>
 +
      <a href="https://www-lbme.biotoul.fr/"><img src="https://static.igem.org/mediawiki/2017/5/51/T--INSA-UPS_France--Logo_LBME.png" alt=""></a>
 +
      <a href="https://www6.toulouse.inra.fr/metatoul_eng/"><img src="https://static.igem.org/mediawiki/2017/1/16/T--INSA-UPS_France--Logo_metatoul.png" alt=""></a>
 
       <a href="http://www.univ-tlse3.fr/associations-+/do-you-have-a-project--378066.kjsp?RH=1238417866394"><img src="https://static.igem.org/mediawiki/2017/5/5b/T--INSA-UPS_France--Logo_fsdie.png" alt=""></a>
 
       <a href="http://www.univ-tlse3.fr/associations-+/do-you-have-a-project--378066.kjsp?RH=1238417866394"><img src="https://static.igem.org/mediawiki/2017/5/5b/T--INSA-UPS_France--Logo_fsdie.png" alt=""></a>
 
       <a href="http://en.univ-toulouse.fr/our-strengths"><img src="https://static.igem.org/mediawiki/2017/9/93/T--INSA-UPS_France--Logo_fsie.jpg" alt=""></a>
 
       <a href="http://en.univ-toulouse.fr/our-strengths"><img src="https://static.igem.org/mediawiki/2017/9/93/T--INSA-UPS_France--Logo_fsie.jpg" alt=""></a>
Line 358: Line 239:
 
<!--
 
<!--
 
   -->
 
   -->
 
</div>
 
  
 
</html>
 
</html>
 
{{INSA-UPS_France/General_script}}
 
{{INSA-UPS_France/General_script}}
 
{{INSA-UPS_France/Header_script}}
 
{{INSA-UPS_France/Header_script}}

Latest revision as of 19:36, 31 October 2017


Design

We created a synthetic consortium and demonstrated the power of such approach to fight against cholera disease. Our synthetic consortium involves three microorganism: i) an engineered E. coli to mimic V. cholerae ii) an engineered V. harveyi to sense the presence of the engineered E. coli and in repsonse to produce diacetyl iii) a yeast P. pastoris engineered to detect diacetyl and in response to produce antibacterial peptides (AMPs) in order to trigger lysis of Vibrio species. Here is presented a closer view of the molecular details for each micro-organism as well as an overview of our experimental plan.

Overview

Organisms

Escherichia coli

For safety reasons, the bacteria gram negative E. coli was chosen to mimic V. cholerae. E. coli is an easy organism to deal with, especially as it is well documented, easy to transform with exogenous DNA and easy to culture. The strain K-12 MG1655 was transformed with a plasmid allowing expression of the protein CqsA from V. cholerae, the enzyme responsible for the synthesis of CAI-1. However, as a proof of concept, we also transformed our E. coli strain with the gene coding for the CqsA of V. harveyi, a non-pathogen strain, producing the molecule C8-CAI-1 (an analogue of the V. cholerae CAI-1)1,2. C8-CAI1 is a carbohydrate chain based displaying an hydroxyl group on carbon 3 and ketone function on carbon 4. The CqsA synthetase from V. harveyi produce C8-CAI-1 from endogenous E. coli (S)-adenosylmethionine (SAM) and octanoyl-coenzyme. cqsA from both V. harveyi and V. cholerae were placed under the pLac promoter and we used plasmid pSB1C3 to maintain compatibility with the iGEM registry.

V. harveyi

V. harveyi is a gram negative bacteria, well studied for its quorum sensing system. This bacteria displays its own pathway for the detection of C8-CAI-1. The gene cqsS encodes for the sensor C8-CAI-1 and a single point mutation in its sequence allows V. harveyi to detect both C8-CAI-1 and CAI-1 from V. cholerae. To avoid auto-activation of V. harveyi, we used the JMH626 strain, in which the cqsA gene, coding the enzyme involved in the production C8-CAI-1, has been deleted. Furthermore, additional genes luxS and luxS coding for key enzymes involved in the expression of other quorum sensing molecules have been deleted. All these mutations make the strain JMH626 specific for detecting non-endogenous C8-CAI-1. V. harveyi is also able to regulate the activation of genes under the control of the promoter pQRR4, in a C8-CAI-1 concentration dependent manner 1. At high C8-CAI-1 concentration, the promoter is inactivated. Thus we added the inverter tetR/pTet to activate a gene of interest in presence of C8-CAI-1. The gene of interest is als that encodes for the acetolactate synthase (Als). this enzyme synthetized diacetyl from pyruvate3. Diacetyl is our ransmitter molecule (Figure 1).

The pBBR1MCS-44, a broad host range plasmid, was chosen to allow the transfer of the system into V. harveyi by conjugation (i.e. this is the only way to modify the V. harveyi chassis).

In conclusion, we designed a V. harveyi strain enable to detect both exogenous CAI-1 or C8-CAI-1, and to produce diacetyl as a molecular response.

P. pastoris

V. harveyi cannot not be used as the effector since production of antimicrobial peptides (AMPs) is lethal for Vibrio species. P. pastoris is a yeast commonly used in academic laboratories and industry for its high potential to produce protein. In addition, yeasts were previously described to produce a wide range of AMPs 5,6. Finally, a system allowing efficient communication between yeast and prokaryotes has already been decribed i.e. the diacetyl-dependant Odr-10 receptor system7. This system allows the expression of targets genes under the control of pFUS1 via the Ste12 pathway (Figure 2). For all these reason, we thus chose P. pastoris. We used the constitutive pGAP promoter to express the receptor Odr-10 in P. pastoris

To kill V. cholerae, we looked for a new and innovative antibiotic solution to limit the risk of acquired-resistance. We decided to use AMPs, that are small membrane disrupting molecules toxic for a large panel of microorganisms8. Here we selected AMPs from crocodiles. Crocodiles live in harsh environment and are known to possess an impressive defence system, that allows them to catch very few disease and antimicrobial peptides are part of it9. We focused on 3 different AMPs described to have the best efficiency against V. cholerae. Those AMPs are Leucrocin I10, D-NY1511 and cOT212. Leucrocine I possess one cationic charge for 7 amino acids. D-NY15 is its optimized counterpart with 4 cationic charges and a sequence of 15 amino-acid long. Finally, cOT2 is 29 amino acid long and possesses 6 cationic charges. These AMPs were placed under control of the pGAP constitutive promoter for preliminary tests and under pFUS1 promoter to promote their expression in response to diacetyl. The genetic constructions were inserted into the integrative pPICZα plasmid i.e. a good plasmid for protein production. The signal peptide α-factor was fused to the AMPs to allow for secretion of the peptides.

The action of these AMPs is the last event of our synthetic consortium.

Modules & Parts

Sense

To create our sensor strain, we took advantage of the intraspecies quorum sensing of V. cholerae: the CAI-1/CqsS system. To mimic this pathway, we made an E. coli producer strain of quorum-sensing molecules (i.e. CAI-1 and C8-CAI-1) and we express a modified CqsS* receptor in V. harveyi that can sense both CAI-1 and C8-CAI-1.

Transmit

In response to quorum sensing molecules, the sensor strain activates the pathway leading to the inhibition of the als gene placed under the control of pQRR4 promoter. The signal is inverted by the tetR/pTet system to trigger als gene expression and thus diacetyl production. Diacetyl in turn activates the Odr-10 receptor implemented in the yeast Pichia pastoris.

Respond

Once Odr-10 receptor sensed diacetyl, the pFUS1 promoter triggers expression of AMPs. After excretion, these AMPs can disrupt the membrane of the Vibrio species

Experimental plan

E. coli

Quorum sensing molecule production

  • Measurement of C8-CAI-1 & CAI-1in supernateant by NMR
  • Bioluminescence assay

V. harveyi

Conjugation

  • Conjugation test using a plasmid expressing RFP

Diacetyl production

  • Measurement by NMR of diacetyl in supernateant of E. coli and V. harveyi producing strains

P. pastoris

Diacetyl detection

  • In vivo functionality of pGAP using RFP reporter system
  • In vivo functionality of ODR10/pFUS1 system test using RFP reporter system

Antimicrobial peptides (AMPs)

  • Verification of AMP genes expression by RT-PCR
  • Verification of AMPs activity by toxicity assay