Difference between revisions of "Team:INSA-UPS France/test"

 
(151 intermediate revisions by 2 users not shown)
Line 5: Line 5:
  
 
<html>
 
<html>
 
+
<main class="site-main">
<!-- C O N T E N T -->
+
 
+
  <main class="site-main">
+
 
   <div class="main_content">
 
   <div class="main_content">
 
   <div class="middle_container">
 
   <div class="middle_container">
Line 14: Line 11:
 
   <div class="section_container">
 
   <div class="section_container">
  
     <section style="display:table;background:none;padding:0px !important;z-index:100; ">
+
     <section style="margin-top:200px;">
      <h1 style="vertical-align:bottom;display:table-cell; width:70%;font-size:60pt;letter-spacing: 0.2em;z-index:120;text-align: center;">Description</h1>
+
      <h1 style="text-align: left;margin-top:-110px;font-size:5vw;letter-spacing: 1vw;">Design</h1>
      <img style="vertical-align:bottom;display:table-cell; width:100%;" src="https://static.igem.org/mediawiki/2017/e/e8/T--INSA-UPS_France--description_croco.png" alt="">
+
      <img style="width:25%;min-width: 260px; position:absolute;right:0;top:-200px; " src="https://static.igem.org/mediawiki/2017/e/e3/T--INSA-UPS_France--design_croco.png" alt="">
 +
      <p style="margin-top: 50px;">
 +
        We created a synthetic consortium and demonstrated the power of such approach to fight against cholera disease. Our synthetic consortium involves three microorganism: i) an engineered <i>E. coli</i> to mimic<i> V. cholerae</i> ii) an engineered </i>V. harveyi</i> to sense the presence of the engineered <i>E. coli</i> and in repsonse to produce diacetyl iii) a yeast <i>P. pastoris</i> engineered to detect diacetyl and in response to produce antibacterial peptides (AMPs) in order to trigger lysis of<i> Vibrio </i> species. Here is presented a closer view of the molecular details for each micro-organism as well as an overview of our experimental plan.
 +
 
 +
      </p>
 +
    </section>
 +
 
 +
 
 +
    <section style="background: none;">
 +
      <h1 style="text-align:left;">Overview</h1>
 +
      <img src="https://static.igem.org/mediawiki/2017/b/b8/T--INSA-UPS_France--description_loop.png" alt="" style="width:100%;">
 +
    </section>
 +
 
 +
    <section>
 +
      <h1 style="text-align: left;">Organisms</h1>
 +
      <h2><i>Escherichia coli</i></h2>
 +
      <p>
 +
        For safety reasons, the bacteria gram negative <i>E. coli</i> was chosen to mimic <i> V. cholerae</i>. <i>E. coli</i> is an easy organism to deal with, especially as it is well documented, easy to transform with exogenous DNA and easy to culture. The strain K-12 MG1655 was transformed with a plasmid allowing expression of the protein CqsA from<i> V. cholerae</i>, the enzyme responsible for the synthesis of CAI-1. However, as a proof of concept, we also transformed our <i>E. coli</i> strain with the gene coding for the CqsA of </i>V. harveyi</i>, a non-pathogen strain, producing the molecule C8-CAI-1 (an analogue of the<i> V. cholerae</i> CAI-1)<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472/" target="_blank">1</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/15466044/" target="_blank">2</a></sup>. C8-CAI1 is a carbohydrate chain based displaying an hydroxyl group on carbon 3 and ketone function on carbon 4. The CqsA synthetase from </i>V. harveyi</i> produce C8-CAI-1 from endogenous <i>E. coli</i> (S)-adenosylmethionine (SAM) and octanoyl-coenzyme. <i> cqsA </i> from both <i>V. harveyi</i> and <i> V. cholerae</i> were placed under the pLac promoter and we used plasmid pSB1C3 to maintain compatibility with the iGEM registry.
 +
 
 +
 
 +
 
 +
 
 +
</p>
 +
      <img src="https://static.igem.org/mediawiki/2017/f/fc/T--INSA-UPS_France--design_plasmid-coli.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
 +
      <p style="margin-left:15%;">
 +
      </p>
 +
    </section>
 +
 
 +
 
 +
   
 +
    <section>
 +
      <h2><i>V. harveyi</i></h2>
 +
      <p>
 +
        <i>V. harveyi</i> is a gram negative bacteria, well studied for its quorum sensing system. This bacteria displays its own pathway for the detection of C8-CAI-1. The gene <i>cqsS</i> encodes for the sensor C8-CAI-1 and a single point mutation in its sequence allows <i>V. harveyi</i> to detect both C8-CAI-1 and CAI-1 from <i> V. cholerae</i>. To avoid auto-activation of <i>V. harveyi</i>, we used the JMH626 strain, in which the <i> cqsA </i> gene, coding the enzyme involved in the production C8-CAI-1, has been deleted. Furthermore, additional genes <i>luxS</i> and <i>luxS</i> coding for key enzymes involved in the expression of other quorum sensing molecules have been deleted. All these mutations make the strain JMH626 specific for detecting non-endogenous C8-CAI-1. <i>V. harveyi</i> is also able to regulate the activation of genes under the control of the promoter pQRR4, in a C8-CAI-1 concentration dependent manner <sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472/" target="_blank">1</a></sup>. At high C8-CAI-1 concentration, the promoter is inactivated. Thus we added the inverter tetR/pTet to activate a gene of interest in presence of C8-CAI-1. The gene of interest is <i>als</i> that encodes for the acetolactate synthase (Als). this enzyme synthetized diacetyl from pyruvate<sup><a href="http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=vhr00650&keyword=diacetyl" target="_blank">3</a></sup>. Diacetyl is our ransmitter molecule (Figure 1).
 +
      </p>
 +
      <img src="https://static.igem.org/mediawiki/2017/f/fa/T--INSA-UPS_France--design_plasmid-harveyi.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
 +
      <p style="margin-left:15%;">
 +
      The pBBR1MCS-4<sup><a href="http://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=vhr00650&keyword=diacetyl" target="_blank">4</a></sup>, a broad host range plasmid, was chosen to allow the transfer of the system into <i>V. harveyi</i> by conjugation (i.e. this is the only way to modify the <i>V. harveyi</i> chassis).
 +
      </p>
 +
<p style="margin-left:15%;">
 +
In conclusion, we designed a <i>V. harveyi</i> strain enable to detect both exogenous CAI-1 or C8-CAI-1, and to produce diacetyl as a molecular response.
 +
  </p>
 +
    </section>
 +
   
 +
    <section>
 +
      <h2><i>P. pastoris</i></h2>
 +
      <p>
 +
        <i>V. harveyi</i> cannot not be used as the effector since production of antimicrobial peptides (AMPs) is lethal for <i> Vibrio </i> species. <i>P. pastoris</i> is a yeast commonly used in academic laboratories and industry for its high potential to produce protein. In addition, yeasts were previously described to produce a wide range of AMPs <sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494115/
 +
" target="_blank">5</a>,<a href="https://www.ncbi.nlm.nih.gov/pubmed/23624708" target="_blank">6</a></sup>. Finally, a system allowing efficient communication between yeast and prokaryotes has already been decribed i.e. the diacetyl-dependant Odr-10 receptor system<sup><a href="https://2013.igem.org/Team:SCUT" target="_blank">7</a></sup>. This system allows the expression of targets genes under the control of pFUS1 via the Ste12 pathway (Figure 2). For all these reason, we thus chose <i>P. pastoris</i>. We used the constitutive pGAP promoter to express the receptor Odr-10 in <i>P. pastoris</i>
 +
 
 +
      </p>
 +
      <img src="https://static.igem.org/mediawiki/2017/6/67/T--INSA-UPS_France--design_plasmid-pichia.png" alt="" style="width: 10%; position:absolute;bottom:0; left:10%;">
 +
     
 +
<p>
 +
To kill<i> V. cholerae</i>, we looked for a new and innovative antibiotic solution to limit the risk of acquired-resistance. We decided to use AMPs, that are small membrane disrupting molecules toxic for a large panel of microorganisms<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/27837316" target="_blank">8</a></sup>. Here we selected AMPs from crocodiles. Crocodiles live in harsh environment and are known to possess an impressive defence system, that allows them to catch very few disease and antimicrobial peptides are part of it<sup><a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490821/" target="_blank">9</a></sup>. We focused on 3 different AMPs described to have the best efficiency against <i>V. cholerae</i>. Those AMPs are Leucrocin I<sup><a href="http://www.sciencedirect.com/science/article/pii/S0145305X10003071?via%3Dihub" target="_blank">10</a></sup>, D-NY15<sup><a href="https://www.ncbi.nlm.nih.gov/pubmed/24192554" target="_blank">11</a></sup> and cOT2<sup><a href="http://www.sciencedirect.com/science/article/pii/S0005273617300433" target="_blank">12</a></sup>. Leucrocine I possess one cationic charge for 7 amino acids. D-NY15 is its optimized counterpart with 4 cationic charges and a sequence of 15 amino-acid long. Finally, cOT2 is 29 amino acid long and possesses 6 cationic charges. These AMPs were placed under control of the pGAP constitutive promoter for preliminary tests and under pFUS1 promoter to promote their expression in response to diacetyl. The genetic constructions were inserted into the  integrative pPICZα plasmid i.e. a good plasmid for protein production. The signal peptide α-factor was fused to the AMPs to allow for secretion of the peptides.
 +
</p>
 +
  <p style="margin-left:15%;">
 +
The action of these AMPs is the last event of our synthetic consortium.
 +
</p>
 
     </section>
 
     </section>
  
 
     <style>
 
     <style>
    /* ASIDE NAV */
+
      /* ASIDE NAV */
 
       .left_container{
 
       .left_container{
         width:25%;
+
         width:35%;
         position:absolute;
+
         float:left;
        top:300px;
+
        padding:0;
+
        display:inline-block;
+
        font-family: 'Quicksand', sans-serif;
+
        font-weight: 400;
+
        font-size:16pt;
+
        text-align: right;
+
 
       }
 
       }
 
+
       .left_container img{
       .aside-nav__item + .aside-nav__item{
+
        margin-top:20px;
+
      }
+
      .aside-nav__item{
+
 
         width:100%;
 
         width:100%;
        position:relative;
 
      }
 
      .aside-nav__item:after{
 
        content:'';
 
        border:solid #3377a8 3px;
 
        position:absolute;
 
        right:-30px;
 
        top:40%;
 
        width:12px;
 
        height:12px;
 
        border-radius: 12px;   
 
        margin-left:20px;
 
      }
 
      .aside-nav__item.selected-item:after{
 
        background:#3377a8;
 
      }
 
      .aside-fixed{
 
        position:fixed;
 
        top: 120px;
 
        width: 14%;
 
      }
 
      .aside-nav__item a, .aside-nav__item a:focus, .aside-nav__item a:visited, .aside-nav__item a:hover{
 
        text-decoration: none;
 
        color:black;
 
      }
 
      .aside-nav__item a:hover{
 
        font-weight: 700;
 
 
       }
 
       }
 +
 
     </style>
 
     </style>
 +
 +
 +
    <h1 style="font-family: 'Quicksand', sans-serif;font-size:34pt;text-align: left;margin:20px 10%;">Modules &amp; Parts</h1>
  
 
     <div class="left_container">
 
     <div class="left_container">
 
     <div class="left_container__inside">
 
     <div class="left_container__inside">
       <div class="aside-nav__item">
+
       <img style="height:100%;" src="https://static.igem.org/mediawiki/2017/a/a8/T--INSA-UPS_France--design_blupuriline.png" alt="">
      <a href="#a1" data-number="1">
+
        Synthetic biology
+
      </a>
+
      </div>
+
      <div class="aside-nav__item">
+
      <a href="#a2" data-number="2">
+
        A microbial consortium chassis against cholera
+
      </a>
+
      </div>
+
      <div class="aside-nav__item">
+
      <a href="#a3" data-number="3">
+
        Mimicking <i>Vibrio cholerae</i>
+
      </a>
+
      </div>
+
      <div class="aside-nav__item">
+
      <a href="#a4" data-number="4">
+
        The sensing organism: <i>Vibrio harveyi</i>
+
      </a>
+
      </div>
+
      <div class="aside-nav__item">
+
      <a href="#a5" data-number="5">
+
        The effecting organism: <i>Pichia pastoris</i>
+
      </a>
+
      </div>
+
      <div class="aside-nav__item">
+
      <a href="#a6" data-number="6">
+
        Our system
+
      </a>
+
      </div>
+
      <div class="aside-nav__item">
+
      <a href="#a7" data-number="7">
+
        References
+
      </a>
+
      </div>
+
 
     </div>
 
     </div>
 
     </div>
 
     </div>
Line 110: Line 97:
 
     <style>
 
     <style>
 
     .right_container{
 
     .right_container{
         width:70%;
+
         width:60%;
         margin-left:30%;
+
         margin-left:40%;
 
     }
 
     }
     .article_offset{
+
     section ul{
       margin-bottom:20px;
+
       list-style-position: inside;
       border: solid 1px transparent;
+
    }
 +
 
 +
    .invisible-image{
 +
       visibility: hidden;
 
     }
 
     }
 
     </style>
 
     </style>
Line 122: Line 112:
 
     <div class="right_container">
 
     <div class="right_container">
  
     <div class="article_offset" id="a1"></div>
+
     <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt="" style="width:30%;">
     <section>
+
     <section class="modules_design" style="border:solid 5px #ae3d3d;margin-top:0px;margin-bottom: 0px;">
       <h1>Synthetic biology: to the multi-organisms communication and beyond </h1>
+
       <h2 style="color:#ae3d3d;">Sense</h2>
 
       <p>
 
       <p>
        Nature is still developing a wide large diversity of remarkably efficient pathways in order to sense presence of specific chemical, or even physical parameters such as temperature, pressure and light<sup><a href="#a7">1,2</a></sup>. While biology originally described these phenomena, synthetic biology emerged to take advantage of Nature’s tricks, basically by inserting genetic information from microorganisms into a single and unique one, most of the time <i>Escherichia coli</i><sup><a href="#a7">3</a></sup>. However, focusing only on this type of bacteria is not appropriate to reflect the large complexity of living organisms and more, their intimate relationship in Nature. This aspect starts to be a limiting border in the way of the development of the synthetic biology<sup><a href="#a7">4</a></sup>.
+
          To create our sensor strain, we took advantage of the intraspecies quorum sensing of <i>V. cholerae</i>: the <b>CAI-1/CqsS system</b>. To mimic this pathway, we made an <i>E. coli</i> producer strain of quorum-sensing molecules (i.e. CAI-1 and C8-CAI-1) and we express a modified CqsS* receptor in <i>V. harveyi</i> that can sense both CAI-1 and C8-CAI-1.
 
       </p>
 
       </p>
 +
 
 +
    </section>
 +
    <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt="" style="width:30%;">
 +
    <section class="modules_design" style="border:solid 5px #468789;margin-top:0px;margin-bottom: 0px;">
 +
      <h2 style="color:#468789;">Transmit</h2>
 
       <p>
 
       <p>
        Then, our iGEM project focused on a multi organisms communication pathway, especially between prokaryotic and eukaryotic cells. Thus, we developed a strategy using a cascade of events from a sensor cell (<i>Vibrio harveyi</i>) to an effector cell (<i>Pichia pastoris</i>) in order to detect and eradicate a <i>Vibrio cholera</i> mimicking cell (<i>Escherichia coli</i>) using an antimicrobial peptides from crocodile.
+
      In response to quorum sensing molecules, the sensor strain activates the pathway leading to the inhibition of the <i>als</i> gene placed under the control of <b>pQRR4 promoter</b>. The signal is inverted by the <b>tetR/pTet</b> system to trigger <i>als</i> gene expression and thus diacetyl production. Diacetyl in turn activates the <b>Odr-10 receptor</b> implemented in the yeast <i>Pichia pastoris</i>.
 
       </p>
 
       </p>
       <img src="https://static.igem.org/mediawiki/2017/b/b3/T--INSA-UPS_France--description_sense-effect.png" alt="">
+
        
       <h2>Genesis of our molecular strategy</h2>
+
   
 +
          </section>
 +
    <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt=""  style="width:30%;">
 +
    <section class="modules_design" style="border:solid 5px #f37b6f;margin-top:0px;margin-bottom: 0px;">
 +
       <h2 style="color:#f37b6f;">Respond</h2>
 
       <p>
 
       <p>
        During our iGEM brainstorming, while defining our strategy, cholera epidemic started unfortunately to expand in Yemen<sup><a href="#a7">5</a></sup>. Actually, the bacteria <i>Vibrio cholerae</i> that causes cholera disease is usually found in water and infects more than a million of people each year. This terrible situation led us to focus on this problematic and it appeared that current solutions were not efficient enough to deal with this situation.
+
    Once Odr-10 receptor sensed diacetyl, the <b>pFUS1</b> promoter triggers expression of AMPs. After excretion, these AMPs can disrupt the membrane of the <i>Vibrio</i> species
      </p>
+
      <p>
+
        Recently, academic research groups started to focus on synthetic biology in order to find a way to deal with <i>Vibrio cholerae</i><sup><a href="#a7">6,7</a></sup>. Additionally, some iGEM teams tried also to deal with the challenging detection of <i>V. cholerae</i><sup><a href="#a7">8,9,10</a></sup>, using <i>E. coli</i>. They based their strategy around the quorum sensing system of <i>V. cholerae</i> in order to detect it, implementing CqsS receptor and the LuxU/O pathway into <i>E. coli</i> in order to activate gene expression. However these projects, no matter how clever and brilliant they might be, were not successful enough maybe due to the process complexity of introducing a large amount of DNA information in a single microorganism. That is why we built a synthetic consortium of microorganism against <i>Vibrio cholerae</i>.
+
 
       </p>
 
       </p>
 +
 
     </section>
 
     </section>
 +
    <img class="invisible-image" src="https://static.igem.org/mediawiki/2017/8/81/T--INSA-UPS_France--img_vide.png" alt=""  style="width:30%;">
 +
  
   
+
 
     <div class="article_offset" id="a2"></div>
+
 
    <section>
+
     </div>
       <h1>A microbial consortium chassis against cholera
+
 
</h1>
+
    <section style="padding-left:20%;">
 +
      <h1 style="text-align: left;">Experimental plan</h1>
 +
      <img src="https://static.igem.org/mediawiki/2017/b/b3/T--INSA-UPS_France--design_coli.png" alt="" style="width:15%; position:absolute; top:10px; left:10px;">
 +
       <h2><i>E. coli</i></h2>
 
       <p>
 
       <p>
         We finally created an artificial consortium chassis to deal with cholera disease. The different partners are described below.
+
         Quorum sensing molecule production
 
       </p>
 
       </p>
 
       <ul>
 
       <ul>
         <li>
+
         <li>Measurement of C8-CAI-1 & CAI-1in supernateant by NMR</li>
          To mimic <i>V. cholerae</i> by producing CAI-1 molecule. This will be done in <i>E. coli</i>
+
         <li>Bioluminescence assay</li>
        </li>
+
         </ul>
        <li>
+
          A bacteria with a quorum sensing pathway activated on the <i>V. cholerae</i> presence on which CAI-1 bind. <i>Vibrio harveyi</i> naturally possess that pathway. It will lead to the production of a messenger molecule: that we choose to be diacetyl.
+
        </li>
+
         <li>
+
          The diacetyl binds to the Odr-10 receptor that can be expressed on yeast such as <i>Pichia pastoris</i> and start a molecular pathway.This pathway lead to the activation of pFUS1 and will produce our antimicrobial peptide with a secretion cassette. Those peptides will kill <i>Vibrio cholerae</i>.
+
         </li>
+
      </ul>
+
   
+
     
+
 
     </section>
 
     </section>
  
  
     <div class="article_offset" id="a3"></div>
+
   
    <section>
+
     <section style="padding-left:20%;">
       <h1>Mimicking <i>Vibrio cholerae</i> using <i>Escherichia coli</i></h1>
+
      <img src="https://static.igem.org/mediawiki/2017/5/5c/T--INSA-UPS_France--design_harveyi.png" alt="" style="width:15%; position:absolute; top:10px; left:10px;">
 +
       <h2><i>V. harveyi</i></h2>
 
       <p>
 
       <p>
         An interesting property of <i>Vibrio cholerae</i> is its quorum sensing autoinducer system based on the production of CAI-1 molecule<sup><a href="#a7">11</a></sup>. The amount of this secreted molecule, produced by the enzyme CqsA synthase, is a good reporter of the quantity of bacteria in water. As we were not allowed to work with pathogens in our lab, we engineered the strain <i>Escherichia coli</i> in order to mimic <i>V. cholerae</i>. Thus, we transformed <i>E. coli</i> strain with the CqsA synthase coding gene of <i>Vibrio harveyi</i>, non-pathogen bacteria. CqsA from <i>V. harveyi</i> produces an analog of CAI-1, the molecule C8-CAI-1, from (S)-adenosylmethionine (SAM) and octanoyl-coenzyme A12. Finally, we developed an <i>E. coli</i> strain which produces a marker simulating the presence of the pathogen <i>V. cholerae</i> in the medium. This is the first step of our molecular cascade.
+
         Conjugation
 
       </p>
 
       </p>
    </section>
+
      <ul>
 
+
        <li> Conjugation test using a plasmid expressing RFP</li>
    <div class="article_offset" id="a4"></div>
+
        </ul>
    <section>
+
      <h1>The sensing organism: <i>Vibrio harveyi</i></h1>
+
 
       <p>
 
       <p>
         Once we developed <i>E. coli</i> to produce the <i>V. harveyi</i> C8-CAI-1, this molecule as to be detected in the medium. The easiest way to do it is to use directly the quorum sensing of the non-pathogen <i>V. harveyi</i>. This bacteria is an advantageous good engineerable chassis. We identified that <i>V. harveyi</i> already possesses gene expression depending on the binding of C8-CAI-1 on its receptor, CqsS<sup><a href="#a7">12</a></sup>. For example, pQRR4 is a promoter which activation depends on the presence of C8-CAI-1. To fit with CAI-1 molecule, the CqsS receptor of <i>V. harveyi</i> only needed to be mutated on a single amino acid. We only had to mutate CqsS changing the phenylalanine 175 into a cystein and to integrate the ALS gene under the control of pQRR4 to trigger diacetyl production in presence of CAI-1<sup><a href="#a7">12</a></sup>.
+
         Diacetyl production
 
       </p>
 
       </p>
       <figure>
+
       <ul>
         <img src="https://static.igem.org/mediawiki/2017/e/eb/T--INSA-UPS_France--Description-sense-quorum_2.png" alt="" class="right-img">
+
         <li> Measurement by NMR of diacetyl in supernateant of <i> E. coli</i> and </i>V. harveyi</i> producing strains </li>
        <figcaption>
+
         </ul>
        <b>Cascade of events depending on the CAI-1/CqsS binding in V. cholerae<sup><a href="#a7">12</a></sup></b>. the CAI-1/CqsS binding will start a dephosphorylation cascade leading to the inhibition of pQRR4 and its depending siRNA. The lack of his siRNA will allow the translation of their targeted mRNA.
+
        </figcaption>
+
      </figure>
+
      <p>
+
        We checked the metabolism of diacetyl of <i>V. harveyi</i> on KEGG Pathway, and identified that the acetolactate synthase (ALS) alone allowed the production of diacetyl from pyruvate, a ubiquitous metabolite.This is the second step of our molecular cascade.
+
      </p>
+
      <figure>
+
         <img src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--description_diacetyl.png" alt="">
+
        <figcaption>
+
          <b>Production of diacetyl from pyruvate.</b> The addition of the acetolactate synthase (ALS) can lead to the production of acetolactate which convert itself into diacetyl without enzymatic process.
+
        </figcaption>
+
      </figure>
+
 
     </section>
 
     </section>
 
+
   
     <div class="article_offset" id="a5"></div>
+
     <section style="padding-left:20%;">
    <section>
+
      <img src="https://static.igem.org/mediawiki/2017/2/2d/T--INSA-UPS_France--design_pichia.png" alt="" style="width:15%; position:absolute; top:10px; left:10px;">
       <h1>The effecting organism: <i>Pichia pastoris</i></h1>
+
       <h2><i>P. pastoris</i></h2>
 
       <p>
 
       <p>
        The molecular response to the presence of the mimicking vibrio <i>E. coli</i> strain is the production by <i>V. harveyi</i> of diacetyl. We then need a third partner to produce toxic molecule to kill <i>V. cholerae</i>. This last partner needs to be resistant to the toxic molecule so we choose an eukaryotic cell. Team SCUT<sup><a href="#a7">13</a></sup> previously described a binding-receptor system involving diacetyl and an eukaryotic receptor, the Odr-10 receptor<sup><a href="#a7">14,15</a></sup>. It is a G Protein Coupled Receptor isolated from <i>Caenorhabditis elegans</i> that once activated by diacetyl, lead to the activation of the pFUS1 promoter by Ste12. <i>Pichia pastoris</i> has been chosen as it displays already the Odr-10/pFUS1 pathway.
+
          Diacetyl detection
 
       </p>
 
       </p>
       <figure>
+
       <ul>
         <img src="" alt="">
+
         <li> <i> In vivo </i> functionality of pGAP using RFP reporter system </li>
        <figcaption>
+
        <li><i> In vivo </i> functionality of ODR10/pFUS1 system  test using RFP reporter system </li>
          <b>Activation cascade on the dependence of Diacetyl/Odr-10 binding<sup><a href="#a7">13</a></sup></b>. Once diacetyl bind to Odr-10 a cascade of activation of Ste proteins will lead to the binding of Ste12 on pFUS1 promoter, and so to the expression of gene of interest.
+
       </ul>
        </figcaption>
+
       </figure>
+
 
       <p>
 
       <p>
         Moreover, <i>P. pastoris</i> is a good protein producing organism<sup><a href="#a7">16,17</a></sup>. We engineered the yeast to secret the toxic molecule under the promoter of Ste12. The toxic molecule secreted by <i>P. pastoris</i> is originated from crocodiles<sup>18,19,20,21</sup>. Crocodiles display a remarkable and efficient immune system, allowing the reptiles to resist to a large spectrum of diseases. Thus, they produced antimicrobial peptides (AMPs) which are able to lyse bacteria such as <i>V. cholerae</i>. AMPs are cationic pore-forming molecules targeting bacterium membranes, causing bacterial lysis and death<sup><a href="#a7">22</a></sup>. This is the third step of our cascade.
+
         Antimicrobial peptides (AMPs)
 
       </p>
 
       </p>
       <figure>
+
       <ul>
         <img src="https://static.igem.org/mediawiki/2017/8/80/T--INSA-UPS_France--Description-kill.png" alt="">
+
         <li>Verification of AMP genes expression by RT-PCR</li>
        <figcaption>
+
         <li>Verification of AMPs activity by toxicity assay</li>
          <b>Mechanism of action of antimicrobial peptide and their effects on cells<sup><a href="#a7">22</a></sup>. </b> Antimicrobial peptides are making pore formation into the membrane leading to death of the cell. Transmission electron microscopy provide an insight of the effect of the peptide on the cell.
+
       </ul>
         </figcaption>
+
        <img src="https://static.igem.org/mediawiki/2017/0/0b/T--INSA-UPS_France--Description-kill-MICAMP.png" alt="" class="right-img">
+
        <figcaption>
+
          <b>efficiency of the antimicrobial peptide from crocodile on V. cholerae<sup><a href="#a7">18,20,21</a></sup></b>.The three peptides display and minimal inhibitory concentration 50 in the scale of mg/L.
+
        </figcaption>
+
       </figure>
+
 
+
 
+
     
+
 
     </section>
 
     </section>
 
    <div class="article_offset" id="a6"></div>
 
    <section style="background: none;">
 
      <h1>Our system</h1>     
 
      <p>
 
        See our <a href="https://2017.igem.org/Team:INSA-UPS_France/Design">Design page</a> for more informations of the genetic engineering we used!
 
      </p>
 
      <img src="https://static.igem.org/mediawiki/2017/b/b8/T--INSA-UPS_France--description_loop.png" alt="">     
 
    </section>
 
 
    <style>
 
      ol{
 
        text-align:justify;
 
      }
 
    </style>
 
 
    <div class="article_offset" id="a7"></div>
 
    <section>
 
      <h1>References</h1>     
 
      <ol>
 
        <li>Brogi S, Tafi A, D&eacute;saubry L &amp; Nebigil CG (2014) Discovery of GPCR ligands for probing signal transduction pathways. <i>Frontiers in Pharmacology</i> <br />
 
        <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246677/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4246677/</a>
 
        </li>
 
        <li>
 
          Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. <i>Nature Neuroscience</i>. <br/>
 
          <a href="https://www.ncbi.nlm.nih.gov/pubmed/26308982">https://www.ncbi.nlm.nih.gov/pubmed/26308982</a>
 
        </li>
 
        <li>
 
          Cameron E, Bashor C &amp; Collins J (2014) A brief history of synthetic biology. <i>Nature Reviews Microbiology</i>
 
          <a href="https://www.ncbi.nlm.nih.gov/pubmed/24686414">https://www.ncbi.nlm.nih.gov/pubmed/24686414</a>
 
        </li>
 
        <li>
 
          Hennig S, R&ouml;del G &amp; Ostermann K (2015) Artificial cell-cell communication as an emerging tool in synthetic biology applications. <i>Journal of Biological Engineering</i> <br />
 
          <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531478/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4531478/</a>
 
        </li>
 
        <li>
 
          <a href="http://www.emro.who.int/yem/yemeninfocus/situation-reports.html
 
">http://www.emro.who.int/yem/yemeninfocus/situation-reports.html
 
</a>
 
        </li>
 
        <li>
 
          Focareta A, Paton JC, Morona R, Cook J &amp; Paton AW (2006) A Recombinant Probiotic for Treatment and Prevention of Cholera. <i>Gastroenterology</i> <b>130</b> 1688&ndash;1695 <br />
 
          <a href="https://www.ncbi.nlm.nih.gov/pubmed/16697733">https://www.ncbi.nlm.nih.gov/pubmed/16697733</a>
 
        </li>
 
        <li>
 
          Holowko MB, Wang H, Jayaraman P &amp; Poh CL (2016) Biosensing Vibrio cholerae with Genetically Engineered <i>Escherichia coli</i>. <i>ACS Synthetic Biology</i>
 
          <a href="http://pubs.acs.org/doi/abs/10.1021/acssynbio.6b00079">http://pubs.acs.org/doi/abs/10.1021/acssynbio.6b00079</a>
 
        </li>
 
        <li>
 
          <a href="https://2014.igem.org/Team:UI-Indonesia">https://2014.igem.org/Team:UI-Indonesia</a>
 
        </li>
 
        <li>
 
          <a href="https://2010.igem.org/Team:Sheffield">https://2010.igem.org/Team:Sheffield</a>
 
        </li>
 
        <li>
 
          <a href="https://2014.igem.org/Team:UT-Dallas">https://2014.igem.org/Team:UT-Dallas</a>
 
        </li>
 
        <li>
 
          Bolitho ME, Perez LJ, Koch MJ, Ng W-L, Bassler BL &amp; Semmelhack MF (2011) Small molecule probes of the receptor binding site in the <i>Vibrio cholerae</i> CAI-1 quorum sensing circuit. <i>Bioorganic &amp; Medicinal Chemistry</i> <b>19</b> 6906&ndash;691 <br />
 
          <a href="https://www.ncbi.nlm.nih.gov/pubmed/22001326">https://www.ncbi.nlm.nih.gov/pubmed/22001326</a>
 
        </li>
 
        <li>
 
          Ng W-L, Perez LJ, Wei Y, Kraml C, Semmelhack MF &amp; Bassler BL (2011) Signal production and detection specificity in Vibrio CqsA/CqsS quorum-sensing systems: Vibrio quorum-sensing systems. <i>Molecular Microbiology</i> <b>79</b> 1407&ndash;1417 <br />
 
          <a href="https://www.ncbi.nlm.nih.gov/pubmed/21219472">https://www.ncbi.nlm.nih.gov/pubmed/21219472</a>
 
        </li>
 
        <li>
 
          <a href="https://2013.igem.org/Team:SCUT">https://2013.igem.org/Team:SCUT</a>
 
        </li>
 
        <li>
 
          Zhang Y, Chou JH, Bradley J, Bargmann CI &amp; Zinn K (1997) The Caenorhabditis elegans seven-transmembrane protein ODR-10 functions as an odorant receptor in mammalian cells. <i>Proceedings of the National Academy of Sciences</i> <b>94</b> 12162–12167 <br />
 
          <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC23737/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC23737/</a>
 
        </li>
 
        <li>
 
          Audet M &amp; Bouvier M (2012) Restructuring G-Protein- Coupled Receptor Activation. <i>Cell</i> <b>151</b> 14–2 <br />
 
          <a href="https://www.ncbi.nlm.nih.gov/pubmed/2302121">https://www.ncbi.nlm.nih.gov/pubmed/2302121</a>
 
        </li>
 
        <li>
 
          Kang Z, Huang H, Zhang Y, Du G &amp; Chen J (2017) Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications. <i>World Journal of Microbiology and Biotechnology</i> <br />
 
          <a href="https://www.ncbi.nlm.nih.gov/pubmed/27905091">https://www.ncbi.nlm.nih.gov/pubmed/27905091</a>
 
        </li>
 
        <li>
 
          Huang Y (2012) Secretion and activity of antimicrobial peptide cecropin D expressed in Pichia pastoris. <i>Experimental and Therapeutic Medicine</i> <br />
 
          <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494115/">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3494115/</a>
 
        </li>
 
        <li>
 
          Pata S, Yaraksa N, Daduang S, Temsiripong Y, Svasti J, Araki T &amp; Thammasirirak S (2011) Characterization of the novel antibacterial peptide Leucrocin from crocodile (Crocodylus siamensis) white blood cell extracts. <i>Developmental &amp; Comparative Immunology</i> <b>35</b> 545–553 <br />
 
          <a href="https://www.ncbi.nlm.nih.gov/pubmed/21184776">https://www.ncbi.nlm.nih.gov/pubmed/21184776</a>
 
        </li>
 
        <li>
 
          Preecharram S, Jearranaiprepame P, Daduang S, Temsiripong Y, Somdee T, Fukamizo T, Svasti J, Araki T &amp; Thammasirirak S (2010) Isolation and characterisation of crocosin, an antibacterial compound from crocodile (Crocodylus siamensis) plasma: CROCODILE PLASMA ANTIBACTERIAL COMPOUND. <i>Animal Science Journal</i> <b>81</b> 393–401 <br />
 
          <a href="https://www.ncbi.nlm.nih.gov/pubmed/2059789">https://www.ncbi.nlm.nih.gov/pubmed/2059789</a>
 
        </li>
 
        <li>
 
          Prajanban B, Jangpromma N, Araki T &amp; Klaynongsruang S (2017) Antimicrobial effects of novel peptides cOT2 and sOT2 derived from Crocodylus siamensis and Pelodiscus sinensis ovotransferrins. <i>Biochimica et Biophysica Acta (BBA) - Biomembranes</i> <b>1859</b> 860–869 <br />
 
          <a href="https://www.ncbi.nlm.nih.gov/pubmed/28159460">https://www.ncbi.nlm.nih.gov/pubmed/28159460</a>
 
        </li>
 
        <li>
 
          Yaraksa N, Anunthawan T, Theansungnoen T, Daduang S, Araki T, Dhiravisit A &amp; Thammasirirak S (2014) Design and synthesis of cationic antibacterial peptide based on Leucrocin I sequence, antibacterial peptide from crocodile (Crocodylus siamensis) white blood cell extracts. <i>Journal of Antibiotics</i> <b>67</b> 205 <br />
 
          <a href="https://www.ncbi.nlm.nih.gov/pubmed/24192554">https://www.ncbi.nlm.nih.gov/pubmed/24192554</a>
 
        </li>
 
        <li>
 
          Mar&iacute;n-Medina N, Ram&iacute;rez DA, Trier S &amp; Leidy C (2016) Mechanical properties that influence antimicrobial peptide activity in lipid membranes. <i>Applied Microbiology and Biotechnology</i> <b>100</b> 10251&ndash;10263 <br />
 
          <a href="https://www.ncbi.nlm.nih.gov/pubmed/27837316">https://www.ncbi.nlm.nih.gov/pubmed/27837316</a>
 
        </li>
 
      </ol>
 
    </section>
 
 
    </div>
 
 
     <!-- fin section -->     
 
     <!-- fin section -->     
  
 
   </div>
 
   </div>
 
   </div>
 
   </div>
   
+
 
 
   <footer>
 
   <footer>
 
      
 
      
Line 355: Line 216:
 
       <a href="https://www.veolia.com/en"><img src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--Logo_veolia.png" alt=""></a>
 
       <a href="https://www.veolia.com/en"><img src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--Logo_veolia.png" alt=""></a>
 
       <a href="https://www.france-science.org/-Homepage-English-.html"><img src="https://static.igem.org/mediawiki/2017/1/1a/T--INSA-UPS_France--Logo_ambassade.jpg" alt=""></a>
 
       <a href="https://www.france-science.org/-Homepage-English-.html"><img src="https://static.igem.org/mediawiki/2017/1/1a/T--INSA-UPS_France--Logo_ambassade.jpg" alt=""></a>
 +
      <a href="https://www-lbme.biotoul.fr/"><img src="https://static.igem.org/mediawiki/2017/5/51/T--INSA-UPS_France--Logo_LBME.png" alt=""></a>
 +
      <a href="https://www6.toulouse.inra.fr/metatoul_eng/"><img src="https://static.igem.org/mediawiki/2017/1/16/T--INSA-UPS_France--Logo_metatoul.png" alt=""></a>
 
       <a href="http://www.univ-tlse3.fr/associations-+/do-you-have-a-project--378066.kjsp?RH=1238417866394"><img src="https://static.igem.org/mediawiki/2017/5/5b/T--INSA-UPS_France--Logo_fsdie.png" alt=""></a>
 
       <a href="http://www.univ-tlse3.fr/associations-+/do-you-have-a-project--378066.kjsp?RH=1238417866394"><img src="https://static.igem.org/mediawiki/2017/5/5b/T--INSA-UPS_France--Logo_fsdie.png" alt=""></a>
 
       <a href="http://en.univ-toulouse.fr/our-strengths"><img src="https://static.igem.org/mediawiki/2017/9/93/T--INSA-UPS_France--Logo_fsie.jpg" alt=""></a>
 
       <a href="http://en.univ-toulouse.fr/our-strengths"><img src="https://static.igem.org/mediawiki/2017/9/93/T--INSA-UPS_France--Logo_fsie.jpg" alt=""></a>
Line 374: Line 237:
 
   </main>
 
   </main>
  
 +
<!--
 +
  -->
  
<!-- C O N T E N T -->
 
 
<script type="text/javascript">
 
  $('.main_content').scroll(function(){
 
    var pos = $('.main_content').scrollTop();
 
    // BOLD ASIDE NAV
 
    if(pos>$("#a1").position().top-10){
 
      $('*[data-number="1"]').css("font-weight", "bold");
 
      $('*[data-number="1"]').parent().addClass("selected-item");
 
      $('*[data-number="2"]').css("font-weight", "normal");
 
      $('*[data-number="2"]').parent().removeClass("selected-item");
 
      $('*[data-number="3"]').css("font-weight", "normal");
 
      $('*[data-number="3"]').parent().removeClass("selected-item");
 
      $('*[data-number="4"]').css("font-weight", "normal");
 
      $('*[data-number="4"]').parent().removeClass("selected-item");
 
      $('*[data-number="5"]').css("font-weight", "normal");
 
      $('*[data-number="5"]').parent().removeClass("selected-item");
 
      $('*[data-number="6"]').css("font-weight", "normal");
 
      $('*[data-number="6"]').parent().removeClass("selected-item");
 
      $('*[data-number="7"]').css("font-weight", "normal");
 
                  $('*[data-number="7"]').parent().removeClass("selected-item");
 
      if(pos>$("#a2").position().top-10){
 
        $('*[data-number="1"]').css("font-weight", "normal");
 
        $('*[data-number="1"]').parent().removeClass("selected-item");
 
        $('*[data-number="2"]').css("font-weight", "bold");
 
        $('*[data-number="2"]').parent().addClass("selected-item");
 
        $('*[data-number="3"]').css("font-weight", "normal");
 
        $('*[data-number="3"]').parent().removeClass("selected-item");
 
        $('*[data-number="4"]').css("font-weight", "normal");
 
        $('*[data-number="4"]').parent().removeClass("selected-item");
 
        $('*[data-number="5"]').css("font-weight", "normal");
 
        $('*[data-number="5"]').parent().removeClass("selected-item");
 
        $('*[data-number="6"]').css("font-weight", "normal");
 
        $('*[data-number="6"]').parent().removeClass("selected-item");
 
        $('*[data-number="7"]').css("font-weight", "normal");
 
                  $('*[data-number="7"]').parent().removeClass("selected-item");
 
        if(pos>$("#a3").position().top-10){
 
          $('*[data-number="1"]').css("font-weight", "normal");
 
          $('*[data-number="1"]').parent().removeClass("selected-item");
 
          $('*[data-number="2"]').css("font-weight", "normal");
 
          $('*[data-number="2"]').parent().removeClass("selected-item");
 
          $('*[data-number="3"]').css("font-weight", "bold");
 
          $('*[data-number="3"]').parent().addClass("selected-item");
 
          $('*[data-number="4"]').css("font-weight", "normal");
 
          $('*[data-number="4"]').parent().removeClass("selected-item");
 
          $('*[data-number="5"]').css("font-weight", "normal");
 
          $('*[data-number="5"]').parent().removeClass("selected-item");
 
          $('*[data-number="6"]').css("font-weight", "normal");
 
          $('*[data-number="6"]').parent().removeClass("selected-item");
 
          $('*[data-number="7"]').css("font-weight", "normal");
 
                  $('*[data-number="7"]').parent().removeClass("selected-item");
 
          if(pos>$("#a4").position().top-10){
 
            $('*[data-number="1"]').css("font-weight", "normal");
 
            $('*[data-number="1"]').parent().removeClass("selected-item");
 
            $('*[data-number="2"]').css("font-weight", "normal");
 
            $('*[data-number="2"]').parent().removeClass("selected-item");
 
            $('*[data-number="3"]').css("font-weight", "normal");
 
            $('*[data-number="3"]').parent().removeClass("selected-item");
 
            $('*[data-number="4"]').css("font-weight", "bold");
 
            $('*[data-number="4"]').parent().addClass("selected-item");
 
            $('*[data-number="5"]').css("font-weight", "normal");
 
            $('*[data-number="5"]').parent().removeClass("selected-item");
 
            $('*[data-number="6"]').css("font-weight", "normal");
 
            $('*[data-number="6"]').parent().removeClass("selected-item");
 
            $('*[data-number="7"]').css("font-weight", "normal");
 
                  $('*[data-number="7"]').parent().removeClass("selected-item");
 
            if(pos>$("#a5").position().top-10){
 
              $('*[data-number="1"]').css("font-weight", "normal");
 
              $('*[data-number="1"]').parent().removeClass("selected-item");
 
              $('*[data-number="2"]').css("font-weight", "normal");
 
              $('*[data-number="2"]').parent().removeClass("selected-item");
 
              $('*[data-number="3"]').css("font-weight", "normal");
 
              $('*[data-number="3"]').parent().removeClass("selected-item");
 
              $('*[data-number="4"]').css("font-weight", "normal");
 
              $('*[data-number="4"]').parent().removeClass("selected-item");
 
              $('*[data-number="5"]').css("font-weight", "bold");
 
              $('*[data-number="5"]').parent().addClass("selected-item");
 
              $('*[data-number="6"]').css("font-weight", "normal");
 
              $('*[data-number="6"]').parent().removeClass("selected-item");
 
              $('*[data-number="7"]').css("font-weight", "normal");
 
                  $('*[data-number="7"]').parent().removeClass("selected-item");
 
              if(pos>$("#a6").position().top-10){
 
                $('*[data-number="1"]').css("font-weight", "normal");
 
                $('*[data-number="1"]').parent().removeClass("selected-item");
 
                $('*[data-number="2"]').css("font-weight", "normal");
 
                $('*[data-number="2"]').parent().removeClass("selected-item");
 
                $('*[data-number="3"]').css("font-weight", "normal");
 
                $('*[data-number="3"]').parent().removeClass("selected-item");
 
                $('*[data-number="4"]').css("font-weight", "normal");
 
                $('*[data-number="4"]').parent().removeClass("selected-item");
 
                $('*[data-number="5"]').css("font-weight", "normal");
 
                $('*[data-number="5"]').parent().removeClass("selected-item");
 
                $('*[data-number="6"]').css("font-weight", "bold");
 
                $('*[data-number="6"]').parent().addClass("selected-item");
 
                $('*[data-number="7"]').css("font-weight", "normal");
 
                  $('*[data-number="7"]').parent().removeClass("selected-item");
 
                if(pos>$("#a7").position().top-10){
 
                  $('*[data-number="1"]').css("font-weight", "normal");
 
                  $('*[data-number="1"]').parent().removeClass("selected-item");
 
                  $('*[data-number="2"]').css("font-weight", "normal");
 
                  $('*[data-number="2"]').parent().removeClass("selected-item");
 
                  $('*[data-number="3"]').css("font-weight", "normal");
 
                  $('*[data-number="3"]').parent().removeClass("selected-item");
 
                  $('*[data-number="4"]').css("font-weight", "normal");
 
                  $('*[data-number="4"]').parent().removeClass("selected-item");
 
                  $('*[data-number="5"]').css("font-weight", "normal");
 
                  $('*[data-number="5"]').parent().removeClass("selected-item");
 
                  $('*[data-number="6"]').css("font-weight", "normal");
 
                  $('*[data-number="6"]').parent().removeClass("selected-item");
 
                  $('*[data-number="7"]').css("font-weight", "bold");
 
                  $('*[data-number="7"]').parent().addClass("selected-item");
 
                }
 
              }
 
            }
 
          }
 
        }
 
      }
 
    }
 
    // FIXED ASIDE NAV
 
    if(pos>371){
 
      $('.left_container').addClass("aside-fixed");
 
    }
 
    else{
 
      $('.left_container').removeClass("aside-fixed");
 
    }
 
  });
 
 
</script>
 
 
<script type="text/javascript">
 
 
    // NAV BAR SUBNAV CLICK
 
 
  $(document).on("click",".cat_name", function(){
 
    if($(this).parent().children('.subnav').css("max-height")=="0px"){
 
      $('.subnav').css("max-height","0px");
 
      $(this).parent().children('.subnav').css("max-height","1000px");
 
    }
 
    else{
 
      $(this).parent().children('.subnav').css("max-height","0px");
 
    }   
 
  });
 
</script>
 
 
<script type="text/javascript">
 
  var contentSections = $('.article_offset'),
 
  navigationItems = $('.left_container .aside-nav__item:after');
 
 
  updateNavigation();
 
  $('.main_content').on('scroll', function(){
 
    updateNavigation();
 
    });
 
 
 
  function updateNavigation() {
 
    contentSections.each(function(){
 
      $this = $(this);
 
 
      var activeSection = $('.left_container a[href="#'+$this.attr('id')+'"]').data('number') - 1;
 
    });
 
  }
 
 
  function smoothScroll(target) {
 
        $('body,html').animate(
 
          {'scrollTop':target.offset().top},
 
          600
 
        );
 
  }
 
</script>
 
 
</body>
 
 
</html>
 
</html>
 
{{INSA-UPS_France/General_script}}
 
{{INSA-UPS_France/General_script}}
 
{{INSA-UPS_France/Header_script}}
 
{{INSA-UPS_France/Header_script}}

Latest revision as of 19:36, 31 October 2017


Design

We created a synthetic consortium and demonstrated the power of such approach to fight against cholera disease. Our synthetic consortium involves three microorganism: i) an engineered E. coli to mimic V. cholerae ii) an engineered V. harveyi to sense the presence of the engineered E. coli and in repsonse to produce diacetyl iii) a yeast P. pastoris engineered to detect diacetyl and in response to produce antibacterial peptides (AMPs) in order to trigger lysis of Vibrio species. Here is presented a closer view of the molecular details for each micro-organism as well as an overview of our experimental plan.

Overview

Organisms

Escherichia coli

For safety reasons, the bacteria gram negative E. coli was chosen to mimic V. cholerae. E. coli is an easy organism to deal with, especially as it is well documented, easy to transform with exogenous DNA and easy to culture. The strain K-12 MG1655 was transformed with a plasmid allowing expression of the protein CqsA from V. cholerae, the enzyme responsible for the synthesis of CAI-1. However, as a proof of concept, we also transformed our E. coli strain with the gene coding for the CqsA of V. harveyi, a non-pathogen strain, producing the molecule C8-CAI-1 (an analogue of the V. cholerae CAI-1)1,2. C8-CAI1 is a carbohydrate chain based displaying an hydroxyl group on carbon 3 and ketone function on carbon 4. The CqsA synthetase from V. harveyi produce C8-CAI-1 from endogenous E. coli (S)-adenosylmethionine (SAM) and octanoyl-coenzyme. cqsA from both V. harveyi and V. cholerae were placed under the pLac promoter and we used plasmid pSB1C3 to maintain compatibility with the iGEM registry.

V. harveyi

V. harveyi is a gram negative bacteria, well studied for its quorum sensing system. This bacteria displays its own pathway for the detection of C8-CAI-1. The gene cqsS encodes for the sensor C8-CAI-1 and a single point mutation in its sequence allows V. harveyi to detect both C8-CAI-1 and CAI-1 from V. cholerae. To avoid auto-activation of V. harveyi, we used the JMH626 strain, in which the cqsA gene, coding the enzyme involved in the production C8-CAI-1, has been deleted. Furthermore, additional genes luxS and luxS coding for key enzymes involved in the expression of other quorum sensing molecules have been deleted. All these mutations make the strain JMH626 specific for detecting non-endogenous C8-CAI-1. V. harveyi is also able to regulate the activation of genes under the control of the promoter pQRR4, in a C8-CAI-1 concentration dependent manner 1. At high C8-CAI-1 concentration, the promoter is inactivated. Thus we added the inverter tetR/pTet to activate a gene of interest in presence of C8-CAI-1. The gene of interest is als that encodes for the acetolactate synthase (Als). this enzyme synthetized diacetyl from pyruvate3. Diacetyl is our ransmitter molecule (Figure 1).

The pBBR1MCS-44, a broad host range plasmid, was chosen to allow the transfer of the system into V. harveyi by conjugation (i.e. this is the only way to modify the V. harveyi chassis).

In conclusion, we designed a V. harveyi strain enable to detect both exogenous CAI-1 or C8-CAI-1, and to produce diacetyl as a molecular response.

P. pastoris

V. harveyi cannot not be used as the effector since production of antimicrobial peptides (AMPs) is lethal for Vibrio species. P. pastoris is a yeast commonly used in academic laboratories and industry for its high potential to produce protein. In addition, yeasts were previously described to produce a wide range of AMPs 5,6. Finally, a system allowing efficient communication between yeast and prokaryotes has already been decribed i.e. the diacetyl-dependant Odr-10 receptor system7. This system allows the expression of targets genes under the control of pFUS1 via the Ste12 pathway (Figure 2). For all these reason, we thus chose P. pastoris. We used the constitutive pGAP promoter to express the receptor Odr-10 in P. pastoris

To kill V. cholerae, we looked for a new and innovative antibiotic solution to limit the risk of acquired-resistance. We decided to use AMPs, that are small membrane disrupting molecules toxic for a large panel of microorganisms8. Here we selected AMPs from crocodiles. Crocodiles live in harsh environment and are known to possess an impressive defence system, that allows them to catch very few disease and antimicrobial peptides are part of it9. We focused on 3 different AMPs described to have the best efficiency against V. cholerae. Those AMPs are Leucrocin I10, D-NY1511 and cOT212. Leucrocine I possess one cationic charge for 7 amino acids. D-NY15 is its optimized counterpart with 4 cationic charges and a sequence of 15 amino-acid long. Finally, cOT2 is 29 amino acid long and possesses 6 cationic charges. These AMPs were placed under control of the pGAP constitutive promoter for preliminary tests and under pFUS1 promoter to promote their expression in response to diacetyl. The genetic constructions were inserted into the integrative pPICZα plasmid i.e. a good plasmid for protein production. The signal peptide α-factor was fused to the AMPs to allow for secretion of the peptides.

The action of these AMPs is the last event of our synthetic consortium.

Modules & Parts

Sense

To create our sensor strain, we took advantage of the intraspecies quorum sensing of V. cholerae: the CAI-1/CqsS system. To mimic this pathway, we made an E. coli producer strain of quorum-sensing molecules (i.e. CAI-1 and C8-CAI-1) and we express a modified CqsS* receptor in V. harveyi that can sense both CAI-1 and C8-CAI-1.

Transmit

In response to quorum sensing molecules, the sensor strain activates the pathway leading to the inhibition of the als gene placed under the control of pQRR4 promoter. The signal is inverted by the tetR/pTet system to trigger als gene expression and thus diacetyl production. Diacetyl in turn activates the Odr-10 receptor implemented in the yeast Pichia pastoris.

Respond

Once Odr-10 receptor sensed diacetyl, the pFUS1 promoter triggers expression of AMPs. After excretion, these AMPs can disrupt the membrane of the Vibrio species

Experimental plan

E. coli

Quorum sensing molecule production

  • Measurement of C8-CAI-1 & CAI-1in supernateant by NMR
  • Bioluminescence assay

V. harveyi

Conjugation

  • Conjugation test using a plasmid expressing RFP

Diacetyl production

  • Measurement by NMR of diacetyl in supernateant of E. coli and V. harveyi producing strains

P. pastoris

Diacetyl detection

  • In vivo functionality of pGAP using RFP reporter system
  • In vivo functionality of ODR10/pFUS1 system test using RFP reporter system

Antimicrobial peptides (AMPs)

  • Verification of AMP genes expression by RT-PCR
  • Verification of AMPs activity by toxicity assay