Difference between revisions of "Team:Calgary/Description"

 
(44 intermediate revisions by 3 users not shown)
Line 8: Line 8:
 
<p>Governments and private enterprises alike are gearing up for travel across our Solar System. Plans to colonize nearby planets are underway, with Elon Musk spearheading the initiative to put a human colony on Mars by 2030. In a parallel vein, NASA is planning a manned exploratory mission to Mars as soon as the 2030s. Several other space agencies have similar plans and timelines for their own respective Mars explorations. This exciting time in our history nonetheless comes with the challenges of long-term space travel.</p>
 
<p>Governments and private enterprises alike are gearing up for travel across our Solar System. Plans to colonize nearby planets are underway, with Elon Musk spearheading the initiative to put a human colony on Mars by 2030. In a parallel vein, NASA is planning a manned exploratory mission to Mars as soon as the 2030s. Several other space agencies have similar plans and timelines for their own respective Mars explorations. This exciting time in our history nonetheless comes with the challenges of long-term space travel.</p>
 
   
 
   
<p>Two ecological and economical challenges arise: the sustainable management of waste produced in space, and the high cost of shipping materials to space. </p>
+
<p>Two ecological and economic challenges arise:</p>
+
<p>Waste management on Mars will be paramount because manned missions will need: </p>
+
 
<ol>
 
<ol>
<li> to recover as much water and oxygen as possible to sustain life in outer space, </li>
+
<li>the sustainable management of waste produced in space, and</li>
<li> to treat human waste as to minimize health risks for the crew of a Mars mission, and </li>
+
<li>the high cost of shipping materials to space.</li></ol></p>
<li> to preserve the natural Martian environment. </li>
+
</ol>
+
<p><b>Waste management</b> on Mars will be paramount because manned missions will need to recover as much water and oxygen as possible to sustain life. Human waste must also be treated to minimize health risks for the crew of a Mars mission. All of this must be accomplished while preserving the natural Martian environment. </p>
<p>Currently, the cost of shipping materials up to space is <b>$10,000 USD per pound</b> due to the high price of fuel. This cost will limit early Mars mission crews in the supplies that they can bring or ship from Earth to Mars. One way to mitigate this challenge is to develop a system to produce necessary items in space as needs arise. </p>
+
 
 +
<p>The current <b>cost</b> of shipping materials up to space is <b>$10,000 USD per pound</b> due to the high price of fuel (Hsu, 2011). This expense will constrain early Mars mission crews in the supplies that they can bring or ship from Earth to Mars, and may not allow astronauts to account for every tool they may require during their mission. One way to mitigate this challenge is to develop a system to produce necessary items in space as needs arise. </p><br>
  
  
 
<h2>Our Solution</h2>
 
<h2>Our Solution</h2>
<p><i>(Atika's animation goes here)</i></p>
+
<p>Our team is working on a unique solution to both of the aforementioned challenges of future Mars missions: we intend to upcycle human waste by using it as a feedstock for <i>E. coli</i> engineered to produce bioplastic, which can then be 3D printed into useful tools onsite.</p>
 +
 
 +
<p>Poly(3-hydroxybutyrate) (<b>PHB</b>), a bioplastic, is produced in nature by many bacterial species. Literature has shown that PHB can be produced using a variety of feedstocks, including glucose and volatile fatty acids (<b>VFAs</b>) (Albuquerque <i>et al.</i>, 2011). Since human waste contains both glucose and VFAs, it is a potentially useful feedstock for PHB production.</p>
 +
 
 +
<p>Our team engineered <i>E. coli</i> to express PHB-producing genes, which we codon-optimized to increase the efficiency of PHB production. We then modified native <i>E. coli</i> secretion pathways so the cells would release the PHB they produced. This allows for a continuous PHB production and secretion process, as opposed to a traditional batch process, which is not user-friendly and requires more time and maintenance. When employed together, these genetic modifications create a novel means of bioplastic production.</p>
 +
 
 +
<p>We also developed a start-to-finish process involving both waste management and PHB production. In the first step of this process, solid human waste is collected and fermented with naturally occurring enterogenic bacteria to increase the concentration of VFAs. As a part of this process, the solids from the waste settle and the liquid rises to the surface of the fermentation tank. Next, the VFA-concentrated liquid in the fermentation tank is separated from the solid particles by centrifugation, sterilized by filtration, and passed to a bioreactor containing our engineered PHB-producing <i>E. coli</i>. Once the PHB is synthesized and secreted, it can be continuously collected and extracted from the liquid stream. The resulting liquid can be recycled into drinking water, while PHB particles can be used in a Selective Laser Sintering (SLS) 3D printer to generate items useful to astronauts. </p>
 +
 
 +
<p>This overall process is summarized below. Find more information on our <a href="https://2017.igem.org/Team:Calgary/Process">Process Development</a> page!</p><br>
 +
 
  
 
<script src="https://cdnjs.cloudflare.com/ajax/libs/gsap/latest/plugins/CSSPlugin.min.js"></script>
 
<script src="https://cdnjs.cloudflare.com/ajax/libs/gsap/latest/plugins/CSSPlugin.min.js"></script>
Line 64: Line 72:
 
   {
 
   {
 
           //Set all boxes to hide
 
           //Set all boxes to hide
           box = document.getElementById('Box1');
+
           box = document.getElementById('sep_box');
 
           box.style.display = 'none';
 
           box.style.display = 'none';
           box = document.getElementById('Box2');
+
           box = document.getElementById('syncretion_box');
 
           box.style.display = 'none';
 
           box.style.display = 'none';
           box = document.getElementById('Box3');
+
           box = document.getElementById('stir_box');
 +
          box.style.display = 'none';
 +
          box = document.getElementById('extraction_box');
 +
          box.style.display = 'none';
 +
          box = document.getElementById('default_box');
 
           box.style.display = 'none';
 
           box.style.display = 'none';
 +
  
 
           if (myID === 'Bacteria')
 
           if (myID === 'Bacteria')
 
           {
 
           {
   var x = document.getElementById('Box1');
+
   var x = document.getElementById('syncretion_box');
 
           }
 
           }
 
           else if (myID === 'Separation')
 
           else if (myID === 'Separation')
 
           {
 
           {
               var x = document.getElementById('Box2');
+
               var x = document.getElementById('sep_box');
 
           }
 
           }
 
           else if(myID === 'Stirred-tank')
 
           else if(myID === 'Stirred-tank')
 
           {
 
           {
             var x = document.getElementById('Box3');
+
             var x = document.getElementById('stir_box');
 +
          }
 +
          else if(myID === 'Extraction')
 +
          {
 +
            var x = document.getElementById('extraction_box');
 
           }
 
           }
 
           else
 
           else
 
           {
 
           {
             var x = document.getElementById('Box1');
+
             var x = document.getElementById('default_box');
 
           }
 
           }
  
Line 176: Line 193:
 
.cls-73{stroke:#daede9;stroke-width:0.25px;}
 
.cls-73{stroke:#daede9;stroke-width:0.25px;}
 
.cls-74{stroke-width:3px;}
 
.cls-74{stroke-width:3px;}
 +
    .clss-1,.clss-2,.clss-3{fill:#fcb633;}
 +
    .clss-1,.clss-2,.clss-3,.clss-4{stroke:#fcb633;stroke-miterlimit:10;}
 +
    .clss-1{stroke-width:0.27px;}.clss-2,.clss-4{stroke-width:0.19px;}
 +
    .clss-3{stroke-width:0.25px;}.clss-4{fill:#fff;}
 +
    .clss-5{fill:#d24f2b;}
 +
    .clsss-1,.clsss-2{fill:#fcb633;}
 +
    .clsss-1{stroke:#fcb633;stroke-width:0.08px;}
 +
    .clsss-1,.clsss-7,.clsss-8,.clsss-9{stroke-miterlimit:10;}
 +
    .clsss-3,.clsss-4,.clsss-5,.-9{fill:none;}
 +
    .clsss-3,.clsss-4,.clsss-5,.clsss-7,.clsss-9{stroke:#e27933;}
 +
    .clsss-3,.clsss-4,.clsss-5{stroke-linecap:round;stroke-linejoin:round;stroke-width:1.15px;}
 +
    .clsss-4{stroke-dasharray:4.36 5.33;}.clsss-5{stroke-dasharray:4.87 5.96;}.clsss-6{fill:#f9d7a5;}
 +
    .clsss-7{fill:#e27933;stroke-width:0.19px;}.clsss-8{fill:#fff;stroke:#fff;stroke-width:0.12px;}
 +
    .clsss-9{stroke-width:1.34px;}
 
     .top{
 
     .top{
 
           margin: 0 auto;
 
           margin: 0 auto;
Line 216: Line 247:
 
     }
 
     }
 
   </style>
 
   </style>
 +
  <style>
 +
  .myText{fill:#83859e;stroke:#d24f2b;stroke-miterlimit:10;stroke-width:8.46px;}
 +
 +
  </style>
 +
 +
  <script type="text/javascript">
 +
      function init(evt)
 +
      {
 +
          if ( window.svgDocument == null )
 +
          {
 +
              svgDocument = evt.target.ownerDocument;
 +
          }
 +
 +
          maximum_length = 400;
 +
          my_text = svgDocument.getElementById('text-to-resize');
 +
 +
          for (var font_size=15; font_size>0; font_size--)
 +
          {
 +
              if(my_text.getComputedTextLength() < maximum_length){break;}
 +
              my_text.setAttributeNS(null, "font-size", font_size);
 +
          }
 +
      }
 +
    </script>
 +
 +
 
</defs>
 
</defs>
 
<title>ModelAnimationDesign6</title>
 
<title>ModelAnimationDesign6</title>
Line 705: Line 761:
 
<text class="cls-69" transform="translate(1149.05 564.13)">Start</text>
 
<text class="cls-69" transform="translate(1149.05 564.13)">Start</text>
 
</g>
 
</g>
<g id="Layer_8" data-name="Layer 8">
+
<g id="Layer_8" data-name="Layer 8" >
 +
        <!--
 
<rect class="cls-70" x="827.09" y="1301.88" width="32.19" height="0.01"/>
 
<rect class="cls-70" x="827.09" y="1301.88" width="32.19" height="0.01"/>
 
<rect class="cls-70" x="840.55" y="1294.86" width="5.85" height="5.85"/>
 
<rect class="cls-70" x="840.55" y="1294.86" width="5.85" height="5.85"/>
Line 721: Line 778:
 
<path class="cls-74" d="M890.63,1296.33v46.57s-.1,4.73,3.15,4.73h9.95" transform="translate(0.31 1.31)"/>
 
<path class="cls-74" d="M890.63,1296.33v46.57s-.1,4.73,3.15,4.73h9.95" transform="translate(0.31 1.31)"/>
 
<path class="cls-74" d="M916.47,1296.32v46.57s.1,4.73-3.15,4.73h-10" transform="translate(0.31 1.31)"/>
 
<path class="cls-74" d="M916.47,1296.32v46.57s.1,4.73-3.15,4.73h-10" transform="translate(0.31 1.31)"/>
<ellipse class="cls-74" cx="903.91" cy="1298.06" rx="12.92" ry="1.38"/>
+
<ellipse class="cls-74" cx="903.91" cy="1298.06" rx="12.92" ry="1.38"/>-->
 +
        <g id="airCompressor" transform="translate(840 1270)">
 +
          <rect class="clss-1" x="0.14" y="51.34" width="55.6" height="57.6"/>
 +
          <rect class="clss-2" x="5.67" y="36.62" width="47.9" height="5.76" transform="translate(-10.38 68.61) rotate(-90)"/>
 +
          <circle class="clss-3" cx="29.2" cy="10.52" r="10.4"/><circle class="clss-4" cx="29.2" cy="10.52" r="8"/>
 +
          <path class="clss-5" d="M29.93,11.42l3.12-3.76c.85-1-.61-2.49-1.47-1.47L28.47,10c-.85,1,.61,2.49,1.47,1.47Z"/>
 +
        </g>
 +
        <!--<g id="Flotation" transform="translate(883 1258)">
 +
          <rect class="clsss-1" x="0.04" y="4.76" width="38.36" height="127.41"/>
 +
          <path class="clsss-2" d="M19.22,137c-10.53,0-19.1-2.11-19.1-4.7s8.57-4.7,19.1-4.7,19.1,2.11,19.1,4.7S29.76,137,19.22,137Z"/>
 +
          <path class="clsss-2" d="M19.22,127.66c10.3,0,19,2.11,19,4.61s-8.7,4.61-19,4.61-19-2.11-19-4.61,8.7-4.61,19-4.61m0-.19c-10.6,0-19.2,2.15-19.2,4.8s8.6,4.8,19.2,4.8,19.2-2.15,19.2-4.8-8.6-4.8-19.2-4.8Z"/>
 +
          <line class="clsss-3" x1="3.98" y1="12.68" x2="3.98" y2="14.92"/>
 +
          <line class="clsss-4" x1="3.98" y1="20.26" x2="3.98" y2="124.28"/>
 +
          <path class="clsss-3" d="M4,126.94v2.24a21,21,0,0,0,2,1.06"/>
 +
          <path class="clsss-5" d="M11.52,132.34a28.53,28.53,0,0,0,18.34-.78"/>
 +
          <path class="clsss-3" d="M32.56,130.31q1-.51,1.94-1.12v-2.24"/>
 +
          <line class="clsss-4" x1="34.5" y1="121.61" x2="34.5" y2="17.59"/>
 +
          <line class="clsss-3" x1="34.5" y1="14.92" x2="34.5" y2="12.68"/>
 +
          <path class="clsss-6" d="M19.21,9.5C8.69,9.5.12,7.39.12,4.8S8.69.1,19.21.1,38.31,2.21,38.31,4.8,29.74,9.5,19.21,9.5Z"/>
 +
          <path class="clsss-6" d="M19.21.19c10.3,0,19,2.11,19,4.61s-8.7,4.61-19,4.61S.22,7.3.22,4.8,8.92.19,19.21.19m0-.19C8.62,0,0,2.15,0,4.8S8.62,9.6,19.21,9.6,38.4,7.45,38.4,4.8,29.81,0,19.21,0Z"/>
 +
          <ellipse class="clsss-7" cx="19.41" cy="4.99" rx="16.31" ry="3.07"/>
 +
          <ellipse class="clsss-8" cx="19.31" cy="4.99" rx="13.43" ry="1.44"/>
 +
          <path class="clsss-9" d="M25,7.11s8.83-.19,8.49-1.93"/>
 +
        </g>-->
 +
 
 
</g>
 
</g>
 
<g id="Layer_10" data-name="Layer 10">
 
<g id="Layer_10" data-name="Layer 10">
Line 733: Line 814:
 
</g>
 
</g>
  
   <img id="Box1" class = "top" x="0" y="100" width="37%" height="38%" style=preserveAspectRatio="xMinYMin slice"  src="https://static.igem.org/mediawiki/2017/7/7a/Textbox1.png">
+
   <g id="syncretion_box">
  <img id="Box2" class = "top" x="0" y="100" width="37%" height="38%" style=preserveAspectRatio="xMinYMin slice" src="https://static.igem.org/mediawiki/2017/a/a9/Textbox2.png">
+
      <rect class="myText top" id="rect1"  x="400" y="1600" width="600" height="350"/>
  <img id="Box3" class = "top" x="0" y="100" width="37%" height="38%" style=preserveAspectRatio="xMinYMin slice" src="https://static.igem.org/mediawiki/2017/6/6e/Textbox3.png">
+
    <text
 +
    text-anchor="middle"
 +
    x="700" y="1640" fill="#fff"
 +
    font-family="Times New Roman" font-size="20">
 +
    In the first step of our process, astronaut feces are deposited into a</text>
 +
    <text text-anchor="middle"
 +
      x="700" y="1670" fill="#fff"
 +
      font-family="Times New Roman" font-size="20">
 +
      vacuum toilet and collected in a storage tank before they are passed on</text>
  
 +
    <text  id="text-to-resize"
 +
          text-anchor="middle"
 +
          x="700" y="1700" fill="#fff"
 +
          font-family="Times New Roman" font-size="20">
 +
          to the first bioreactor. The fecal matter is then fermented by natural gut</text>
  
</svg>
+
    <text  id="text-to-resize"
 +
          text-anchor="middle"
 +
          x="700" y="1730" fill="#fff"
 +
          font-family="Times New Roman" font-size="20">
 +
    flora for three days at room temperature. This results in the production
 +
    </text>
 +
    <text  id="text-to-resize"
 +
          text-anchor="middle"
 +
          x="700" y="1760" fill="#fff"
 +
          font-family="Times New Roman" font-size="20">
 +
    of volatile fatty acids (VFAs) and the breakdown of carbohydrates to</text>
 +
    <text  id="text-to-resize"
 +
          text-anchor="middle"
 +
          x="700" y="1790" fill="#fff"
 +
          font-family="Times New Roman" font-size="20">
 +
    produce glucose, which can both later be used as a feedstock for our</text>
 +
    <text  id="text-to-resize"
 +
          text-anchor="middle"
 +
          x="700" y="1820" fill="#fff"
 +
          font-family="Times New Roman" font-size="20">
 +
    PHB-producing, engineered E. coli.</text>
 +
  </g>
  
 +
  <g id="sep_box">
 +
      <rect class="myText top" id="rect1"  x="400" y="1600" width="600" height="350"/>
 +
    <text
 +
    text-anchor="middle"
 +
    x="700" y="1640" fill="#fff"
 +
    font-family="Times New Roman" font-size="20">
 +
    In the next stage, the nutrient-rich liquid stream is obtained by</text>
 +
    <text
 +
      text-anchor="middle"
 +
      x="700" y="1670" fill="#fff"
 +
      font-family="Times New Roman" font-size="20">
 +
      separating it from solid particles. This is achieved with centrifugation</text>
  
<p>Our team is working on developing a process for bioplastic production on Mars from human waste feedstock using genetically engineered <i>E. coli</i>. With this project, we aim to address both of the above major challenges for future manned Mars missions.</p>
+
    <text  id="text-to-resize"
 +
          text-anchor="middle"
 +
          x="700" y="1700" fill="#fff"
 +
          font-family="Times New Roman" font-size="20">
 +
          to remove solids followed by filtration to remove any natural gut flora
 +
    </text>
  
<p>Poly(3-hydroxybutyrate) (<b>PHB</b>), a bioplastic, is produced in nature by many bacterial species. Literature has shown that PHB can be produced using a variety of feedstocks, including glucose and volatile fatty acids (<b>VFAs</b>). Since human waste contains both glucose and VFAs, it is a potential feedstock for PHB production.</p>
+
    <text  id="text-to-resize"
 +
          text-anchor="middle"
 +
          x="700" y="1730" fill="#fff"
 +
          font-family="Times New Roman" font-size="20">
 +
    that may outcompete our engineered E. coli. The solid particles may
 +
    </text>
 +
    <text  id="text-to-resize"
 +
          text-anchor="middle"
 +
          x="700" y="1760" fill="#fff"
 +
          font-family="Times New Roman" font-size="20">
 +
    be recycled later after additional processing as radiation shielding,</text>
 +
    <text  id="text-to-resize"
 +
          text-anchor="middle"
 +
          x="700" y="1790" fill="#fff"
 +
          font-family="Times New Roman" font-size="20">
 +
    building materials, food substrates, or stores of carbon and hydrogen.</text>
 +
  </g>
  
<p>Our team engineered <i>E. coli</i> to express PHB-producing genes, which we optimized to make the PHB production process more efficient. We also modified the system that <i>E. coli</i> use to secrete unwanted molecules so that our recombinant <i>E. coli</i> would secrete the PHB they produce. This allows for a continuous process (as opposed to a batch process, which is less user-friendly and would require more time and maintenance from early Mars mission crews). Thus, when employed together these genetic modifications create an upcycling means of bioplastic production.</p>
+
    <g id="stir_box">
 +
        <rect class="myText top" id="rect1"  x="400" y="1600" width="600" height="350"/>
 +
      <text
 +
      text-anchor="middle"
 +
      x="700" y="1640" fill="#fff"
 +
      font-family="Times New Roman" font-size="20">
 +
      In this stage, continuous fermentation of the nutrient-rich stream occurs</text>
 +
      <text
 +
        text-anchor="middle"
 +
        x="700" y="1670" fill="#fff"
 +
        font-family="Times New Roman" font-size="20">
 +
        in a stirred-tank bioreactor inoculated with PHB-producing E. coli.</text>
  
<p>Our team also developed a start-to-finish process for our waste management and simultaneous PHB production. In the first step of this process, solid human waste is collected and fermented with naturally occurring bacteria to increase the concentration of VFAs. As a part of this process, the solids from the waste settle and the liquid rises to the surface of the fermentation tank. Next, the liquid in the fermentation tank, which contains VFAs, is separated from the solid particles, sterilized, and passed to a bioreactor inoculated with our engineered E. coli. Once the E. coli secrete PHB particles, the PHB can be continuously collected and extracted from the liquid stream. The resulting liquid can be recycled into drinking water, while PHB particles can be used in a Selective Laser Sintering (SLS) 3-D printer to generate items useful to astronauts. </p>
+
      <text  id="text-to-resize"
 +
            text-anchor="middle"
 +
            x="700" y="1700" fill="#fff"
 +
            font-family="Times New Roman" font-size="20">
 +
            These engineered bacteria convert glucose and VFAs in the nutrient-rich</text>
 +
 
 +
      <text  id="text-to-resize"
 +
            text-anchor="middle"
 +
            x="700" y="1730" fill="#fff"
 +
            font-family="Times New Roman" font-size="20">
 +
      feedstock to PHB using the phaCBA and phaC1J4 operons, respectively.</text>
 +
 +
<text  id="text-to-resize"
 +
            text-anchor="middle"
 +
            x="700" y="1760" fill="#fff"
 +
            font-family="Times New Roman" font-size="20">
 +
      The resulting PHB granules are secreted from E. coli by taking</text>
 +
 
 +
<text  id="text-to-resize"
 +
            text-anchor="middle"
 +
            x="700" y="1790" fill="#fff"
 +
            font-family="Times New Roman" font-size="20">
 +
      advantage of its native Type I secretion pathway. A recombinant</text>
 +
 
 +
<text  id="text-to-resize"
 +
            text-anchor="middle"
 +
            x="700" y="1820" fill="#fff"
 +
            font-family="Times New Roman" font-size="20">
 +
      phasin-HlyA fusion protein was designed aid in this process. Exogenous</text>
 +
 
 +
<text  id="text-to-resize"
 +
            text-anchor="middle"
 +
            x="700" y="1850" fill="#fff"
 +
            font-family="Times New Roman" font-size="20">
 +
      phasin electrostatically binds to PHB particles, while the fused HlyA tag</text>
 +
 
 +
<text  id="text-to-resize"
 +
            text-anchor="middle"
 +
            x="700" y="1880" fill="#fff"
 +
            font-family="Times New Roman" font-size="20">
 +
      is recognized by endogenous membrane transport proteins HlyB, HlyD,</text>
 +
 
 +
<text  id="text-to-resize"
 +
            text-anchor="middle"
 +
            x="700" y="1910" fill="#fff"
 +
            font-family="Times New Roman" font-size="20">
 +
      and TolC. The PHB-phasin-HlyA unit is then secreted by these transport</text>
 +
 
 +
<text  id="text-to-resize"
 +
            text-anchor="middle"
 +
            x="700" y="1940" fill="#fff"
 +
            font-family="Times New Roman" font-size="20">
 +
      proteins as a whole.</text>
 +
 
 +
    </g>
 +
 
 +
      <g id="extraction_box">
 +
          <rect class="myText top" id="rect1"  x="400" y="1600" width="600" height="350"/>
 +
        <text
 +
        text-anchor="middle"
 +
        x="700" y="1640" fill="#fff"
 +
        font-family="Times New Roman" font-size="20">
 +
        In the final stage of the process, secreted PHB particles are</text>
 +
        <text
 +
          text-anchor="middle"
 +
          x="700" y="1670" fill="#fff"
 +
          font-family="Times New Roman" font-size="20">
 +
          separated from liquid media via dissolved air flotation. Water</text>
 +
 
 +
        <text  id="text-to-resize"
 +
              text-anchor="middle"
 +
              x="700" y="1700" fill="#fff"
 +
              font-family="Times New Roman" font-size="20">
 +
              oversaturated with air is bubbled through the media in a flotation</text>
 +
 
 +
        <text  id="text-to-resize"
 +
              text-anchor="middle"
 +
              x="700" y="1730" fill="#fff"
 +
              font-family="Times New Roman" font-size="20">
 +
        column, allowing the PHB particles to float to the top. This upper</text>
 +
 
 +
        <text  id="text-to-resize"
 +
              text-anchor="middle"
 +
              x="700" y="1760" fill="#fff"
 +
              font-family="Times New Roman" font-size="20">
 +
        phase containing PHB is then passed to a drying unit, where</text>
 +
 
 +
        <text  id="text-to-resize"
 +
              text-anchor="middle"
 +
              x="700" y="1790" fill="#fff"
 +
              font-family="Times New Roman" font-size="20">
 +
        moister is removed and recycled. Finally, PHB is obtained in</text>
 +
 
 +
    <text  id="text-to-resize"
 +
              text-anchor="middle"
 +
              x="700" y="1820" fill="#fff"
 +
              font-family="Times New Roman" font-size="20">
 +
        powdered form and is ready for 3D printing.</text>
 +
 
 +
      </g>
 +
 
 +
        <g id="default_box">
 +
            <rect class="myText top" id="rect1"  x="400" y="1600" width="600" height="350"/>
 +
          <text
 +
          text-anchor="middle"
 +
          x="700" y="1775" fill="#fff"
 +
          font-family="Times New Roman" font-size="30">
 +
          Click on the boxes above to learn more!</text>
 +
        </g>
 +
 
 +
 
 +
</svg>
  
 +
<br> <br>
  
 
</html>
 
</html>
Line 754: Line 1,025:
 
<html>
 
<html>
 
<h2> Works Cited </h2>
 
<h2> Works Cited </h2>
<p>Cost of Shipping to Space</p>
+
<p>Albuquerque, M.G.E., Martino, V., Pollet, E., Avérous, L. & Reis, M.A.M. (2011). Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: Effect of substrate composition and feeding regime on PHA productivity, composition and properties. J. Biotechnol., 151(1): 66-76</p>
<p>Feedstock VFAs</p>
+
<p>Hsu., J. (2011). Total Cost of NASA's Space Shuttle Program: Nearly $200 Billion. Space.com (Magazine). Retrieved September 17, 2017, from https://www.space.com/11358-nasa-space-shuttle-program-cost-30-years.html</p>
  
  

Latest revision as of 22:54, 31 October 2017

Header

Our Project

The Problem

Governments and private enterprises alike are gearing up for travel across our Solar System. Plans to colonize nearby planets are underway, with Elon Musk spearheading the initiative to put a human colony on Mars by 2030. In a parallel vein, NASA is planning a manned exploratory mission to Mars as soon as the 2030s. Several other space agencies have similar plans and timelines for their own respective Mars explorations. This exciting time in our history nonetheless comes with the challenges of long-term space travel.

Two ecological and economic challenges arise:

  1. the sustainable management of waste produced in space, and
  2. the high cost of shipping materials to space.

Waste management on Mars will be paramount because manned missions will need to recover as much water and oxygen as possible to sustain life. Human waste must also be treated to minimize health risks for the crew of a Mars mission. All of this must be accomplished while preserving the natural Martian environment.

The current cost of shipping materials up to space is $10,000 USD per pound due to the high price of fuel (Hsu, 2011). This expense will constrain early Mars mission crews in the supplies that they can bring or ship from Earth to Mars, and may not allow astronauts to account for every tool they may require during their mission. One way to mitigate this challenge is to develop a system to produce necessary items in space as needs arise.


Our Solution

Our team is working on a unique solution to both of the aforementioned challenges of future Mars missions: we intend to upcycle human waste by using it as a feedstock for E. coli engineered to produce bioplastic, which can then be 3D printed into useful tools onsite.

Poly(3-hydroxybutyrate) (PHB), a bioplastic, is produced in nature by many bacterial species. Literature has shown that PHB can be produced using a variety of feedstocks, including glucose and volatile fatty acids (VFAs) (Albuquerque et al., 2011). Since human waste contains both glucose and VFAs, it is a potentially useful feedstock for PHB production.

Our team engineered E. coli to express PHB-producing genes, which we codon-optimized to increase the efficiency of PHB production. We then modified native E. coli secretion pathways so the cells would release the PHB they produced. This allows for a continuous PHB production and secretion process, as opposed to a traditional batch process, which is not user-friendly and requires more time and maintenance. When employed together, these genetic modifications create a novel means of bioplastic production.

We also developed a start-to-finish process involving both waste management and PHB production. In the first step of this process, solid human waste is collected and fermented with naturally occurring enterogenic bacteria to increase the concentration of VFAs. As a part of this process, the solids from the waste settle and the liquid rises to the surface of the fermentation tank. Next, the VFA-concentrated liquid in the fermentation tank is separated from the solid particles by centrifugation, sterilized by filtration, and passed to a bioreactor containing our engineered PHB-producing E. coli. Once the PHB is synthesized and secreted, it can be continuously collected and extracted from the liquid stream. The resulting liquid can be recycled into drinking water, while PHB particles can be used in a Selective Laser Sintering (SLS) 3D printer to generate items useful to astronauts.

This overall process is summarized below. Find more information on our Process Development page!


ModelAnimationDesign6 ON BIOREACTOR STIRRED-TANK EXTRACTION SEPARATION Finish Start In the first step of our process, astronaut feces are deposited into a vacuum toilet and collected in a storage tank before they are passed on to the first bioreactor. The fecal matter is then fermented by natural gut flora for three days at room temperature. This results in the production of volatile fatty acids (VFAs) and the breakdown of carbohydrates to produce glucose, which can both later be used as a feedstock for our PHB-producing, engineered E. coli. In the next stage, the nutrient-rich liquid stream is obtained by separating it from solid particles. This is achieved with centrifugation to remove solids followed by filtration to remove any natural gut flora that may outcompete our engineered E. coli. The solid particles may be recycled later after additional processing as radiation shielding, building materials, food substrates, or stores of carbon and hydrogen. In this stage, continuous fermentation of the nutrient-rich stream occurs in a stirred-tank bioreactor inoculated with PHB-producing E. coli. These engineered bacteria convert glucose and VFAs in the nutrient-rich feedstock to PHB using the phaCBA and phaC1J4 operons, respectively. The resulting PHB granules are secreted from E. coli by taking advantage of its native Type I secretion pathway. A recombinant phasin-HlyA fusion protein was designed aid in this process. Exogenous phasin electrostatically binds to PHB particles, while the fused HlyA tag is recognized by endogenous membrane transport proteins HlyB, HlyD, and TolC. The PHB-phasin-HlyA unit is then secreted by these transport proteins as a whole. In the final stage of the process, secreted PHB particles are separated from liquid media via dissolved air flotation. Water oversaturated with air is bubbled through the media in a flotation column, allowing the PHB particles to float to the top. This upper phase containing PHB is then passed to a drying unit, where moister is removed and recycled. Finally, PHB is obtained in powdered form and is ready for 3D printing. Click on the boxes above to learn more!

Works Cited

Albuquerque, M.G.E., Martino, V., Pollet, E., Avérous, L. & Reis, M.A.M. (2011). Mixed culture polyhydroxyalkanoate (PHA) production from volatile fatty acid (VFA)-rich streams: Effect of substrate composition and feeding regime on PHA productivity, composition and properties. J. Biotechnol., 151(1): 66-76

Hsu., J. (2011). Total Cost of NASA's Space Shuttle Program: Nearly $200 Billion. Space.com (Magazine). Retrieved September 17, 2017, from https://www.space.com/11358-nasa-space-shuttle-program-cost-30-years.html