Difference between revisions of "Team:BostonU/HP/Gold Integrated"

 
(One intermediate revision by the same user not shown)
Line 230: Line 230:
 
   <p class="body-type mainwrap indented">&nbsp;</p>  
 
   <p class="body-type mainwrap indented">&nbsp;</p>  
 
  <p class="inline-heading-type mainwrap">Part I: Pivoting our project through conversations with academic and industry leaders </p>
 
  <p class="inline-heading-type mainwrap">Part I: Pivoting our project through conversations with academic and industry leaders </p>
   <p class="body-type mainwrap">Dr. Muhammad Zaman is a professor at Boston University who focuses on cancer diagnostics and global health research. He also serves as the advisor for Boston University’s chapter of Engineers without Borders, and has led a variety of projects centered on the development of diagnostic tools for high-need communities. During the early stages of our project, we aimed to develop a microfluidic device based on toehold switches as a tool to detect cancer mRNAs and function as a point-of-care diagnostic. We decided to reach out to Dr. Zaman because his research expertise would provide valuable insight on the feasibility of our intended future applications of the project, as we had no experience in developing point-of-care diagnostics for low-income populations. Dr. Zaman shared with us his opinions on our project and its potential contribution to human health development.</p>
+
   <p class="body-type mainwrap"><a href = "http://www.bu.edu/zaman/">Dr. Muhammad Zaman</a> is a professor at Boston University who focuses on cancer diagnostics and global health research. He also serves as the advisor for Boston University’s chapter of Engineers without Borders, and has led a variety of projects centered on the development of diagnostic tools for high-need communities. During the early stages of our project, we aimed to develop a microfluidic device based on toehold switches as a tool to detect cancer mRNAs and function as a point-of-care diagnostic. We decided to reach out to Dr. Zaman because his research expertise would provide valuable insight on the feasibility of our intended future applications of the project, as we had no experience in developing point-of-care diagnostics for low-income populations. Dr. Zaman shared with us his opinions on our project and its potential contribution to human health development.</p>
 
   <p class="body-type mainwrap">&nbsp;</p>
 
   <p class="body-type mainwrap">&nbsp;</p>
 
   <p class="body-type mainwrap">Dr. Zaman covered two major topics in our discussion with him: accessibility and robustness. When addressing accessibility, he indicated that our device should be able to be used successfully by local health personnel. When designing new technologies, it is important that they fit easily into existing healthcare structure so that they can be adapted with ease. With regards to robustness, Dr. Zaman brought up a number of technical difficulties our technology might encounter if utilized outside of the lab. One issue when attempting to detect RNAs is that RNase enzymes, which are ubiquitous in the environment [1], are highly likely to contaminate RNA samples when not used in a sterile area. Due to the scarcity of sterile facilities needed to mitigate this issue in low-resource areas, RNAse contamination would be highly likely and thus render our device unusable. Dr. Zaman was unconvinced that our project, in its proposed form, would see success when used in the contexts that we were considering.</p>
 
   <p class="body-type mainwrap">Dr. Zaman covered two major topics in our discussion with him: accessibility and robustness. When addressing accessibility, he indicated that our device should be able to be used successfully by local health personnel. When designing new technologies, it is important that they fit easily into existing healthcare structure so that they can be adapted with ease. With regards to robustness, Dr. Zaman brought up a number of technical difficulties our technology might encounter if utilized outside of the lab. One issue when attempting to detect RNAs is that RNase enzymes, which are ubiquitous in the environment [1], are highly likely to contaminate RNA samples when not used in a sterile area. Due to the scarcity of sterile facilities needed to mitigate this issue in low-resource areas, RNAse contamination would be highly likely and thus render our device unusable. Dr. Zaman was unconvinced that our project, in its proposed form, would see success when used in the contexts that we were considering.</p>

Latest revision as of 20:11, 1 November 2017

INTEGRATED HUMAN PRACTICES