Difference between revisions of "Team:NKU China/Model"

(Prototype team page)
 
 
(18 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{NKU_China}}
+
\{{NKU_China/header}}
 
<html>
 
<html>
 +
<head>
  
 +
</head>
 +
<style>
 +
.card-holder { 
 +
  margin-top:20vmin;
 +
  position: fixed;
 +
  width: 0px;
 +
  overflow: visible;
 +
}
  
<div class="column full_size judges-will-not-evaluate">
+
.card-wrapper {
<h3>★  ALERT! </h3>
+
  display: inline-block;
<p>This page is used by the judges to evaluate your team for the <a href="https://2017.igem.org/Judging/Medals">medal criterion</a> or <a href="https://2017.igem.org/Judging/Awards"> award listed above</a>. </p>
+
  float: right;
<p> Delete this box in order to be evaluated for this medal criterion and/or award. See more information at <a href="https://2017.igem.org/Judging/Pages_for_Awards"> Instructions for Pages for awards</a>.</p>
+
  clear: both;
</div>
+
}
<div class="clear"></div>
+
  
<div class="column full_size">
+
.card {
<h1> Modeling</h1>
+
  position: relative;
 +
  left: 32px;
 +
  padding: 16px 32px 16px 64px;
 +
  margin: 8px; 
 +
  x-box-shadow: 0 0 8px 0px rgba(0, 0, 0, 0.5);
 +
  box-shadow: 8px 0 8px -8px rgba(0, 0, 0, 0.5);
 +
  background: #fff;
 +
  transition: all 0.3s ease-in-out 0.1s;
 +
}
  
<p>Mathematical models and computer simulations provide a great way to describe the function and operation of BioBrick Parts and Devices. Synthetic Biology is an engineering discipline, and part of engineering is simulation and modeling to determine the behavior of your design before you build it. Designing and simulating can be iterated many times in a computer before moving to the lab. This award is for teams who build a model of their system and use it to inform system design or simulate expected behavior in conjunction with experiments in the wetlab.</p>
+
.card:hover {
 +
  position: relative;
 +
  left: 100%;
 +
  margin-left: -32px;
 +
  box-shadow:
 +
    0 -8px 8px -8px rgba(0, 0, 0, 0.5),
 +
    0 8px 8px -8px rgba(0, 0, 0, 0.5);
 +
  transition: all 0.3s ease-in-out;
 +
}
  
 +
.card-content {
 +
  display: inline-block;
 +
  color: #fff;
 +
  font-family: 'Droid Sans', sans-serif;
 +
  font-size: 16px;
 +
  font-weight: bold;
 +
  white-space: nowrap;
 +
}
 +
 +
.bg-01 { background: #539770; }
 +
.bg-02 { background: #4B7D74; }
 +
.bg-03 { background: #8DC2BC; }
 +
.bg-04 { background: #EDD6B4; }
 +
.bg-05 { background: #BE7467; }
 +
</style>
 +
 +
<body>
 +
<div>
 +
    <img class="backgroundblur" src="https://static.igem.org/mediawiki/2017/1/16/T--NKU_China--backgroundgc1.png"/>
 
</div>
 
</div>
<div class="clear"></div>
 
  
<div class="column half_size">
+
<div class='card-holder'>
<h3> Gold Medal Criterion #3</h3>
+
  <div class='card-wrapper'>
<p>
+
    <a href='#modIntroduction'>
To complete for the gold medal criterion #3, please describe your work on this page and fill out the description on your <a href="https://2017.igem.org/Judging/Judging_Form">judging form</a>. To achieve this medal criterion, you must convince the judges that your team has gained insight into your project from modeling. You may not convince the judges if your model does not have an effect on your project design or implementation.
+
      <div class='card bg-01'>
</p>
+
        <span class='card-content'>Introduction</span>
 +
      </div>
 +
    </a>
 +
  </div>
 +
  <div class='card-wrapper'>
 +
    <a href='#modGeneral_Model'>
 +
      <div class='card bg-02'>
 +
        <span class='card-content'>General Model</span>
 +
      </div>
 +
    </a>
 +
  </div>
 +
  <div class='card-wrapper'>
 +
    <a href='#modtransmission_model'>
 +
      <div class='card bg-03'>
 +
        <span class='card-content'>Transmission Model</span>
 +
      </div>
 +
    </a>
 +
  </div>
 +
  <div class='card-wrapper'>
 +
    <a href='#modFim_Switch_Model'>
 +
      <div class='card bg-04'>
 +
        <span class='card-content'>The Fim Switch Model</span>
 +
      </div>
 +
    </a>
 +
  </div>
 +
  <div class='card-wrapper'>
 +
    <a href='#modReference'>
 +
      <div class='card bg-05'>
 +
        <span class='card-content'>Reference</span>
 +
      </div>
 +
    </a>
 +
  </div> 
 +
</div>
  
<p>
+
<div id="mod-head">Modelling</div>
Please see the <a href="https://2017.igem.org/Judging/Medals"> 2017 Medals Page</a> for more information.
+
<div id="modIntroduction"></div>
</p>
+
<div class="mod-part" >
 +
<div class="mod-header">Introduction</div>
 +
<div class="mod-p">Oil recovery is quite a huge project that requires a lot of manpower and material resources every time there is a new method to test. So it’s important to find a way to simulate the process and get the results. Fortunately, nowadays mathematics is developed enough to construct a model like a machine,putting the known parameters into it and getting the simulated results without conducting the whole experiment,which is likely to be rather complex.In our project, we just use mathematical models to have a general govern and better understand of our system’s efficiency.</br></br>
 +
The device we constructed works in a dynamic environment and compared with the diameter of the water injection well where the microbes are transported into the oil reservoir and water channel where they function,they are small enough to obey the law applied to water flow which carries them.That’s what we refer constructing the transmission mode,which helps us determine when to “wake up” our engineered microbes.And we also need to know how to “wake them up”- the behavior of fim switch is simulated.By connecting the models together, we can run the microbes virtually with no worry of time,safety and cost,which should be considered when conducting on the spot.
 
</div>
 
</div>
 +
</div>
 +
<div id="modGeneral_Model"></div>
 +
<div class="mod-part" >
 +
<div class="mod-header">General Model</div>
 +
<div class="mod-p">We employed Darcy’s Law to estimate the time cost on the arrival of microbes at the water channel.Upon arriving at the spot, we put inducer like IPTG to activated the complemented gene Bcs A,which is a gene controlling the production of cellulose knocked down in our device and operated by an operon.With the effect of cellulose,the water channel is blocked and the fim switch is activated by adding another inducer like Ara artificially.Then the switch make it possible to produce rhamnolipid in our engineered bacteria,which helps driving oil flow out with water.Thus, the efficiency of oil recovery is increased.</div>
 +
<div class="mod-subheader">Governing expressions &amp; equations</div>
  
<div class="column half_size">
+
<div class="mod-addpic"><img style="max-height:40vmin;"src="https://static.igem.org/mediawiki/2017/0/00/T--NKU_China--modformula1.png" /img></div>
<h3>Best Model Special Prize</h3>
+
<div class="mod-fn">Fig1. Governing expressions & equations</div>
 +
<div class="mod-addpic"><img style="max-width:120vmin;" src="https://static.igem.org/mediawiki/2017/9/93/T--NKU_China--modgeneral1.png" /img></div>
 +
<div class="mod-fn">Fig2. General Scan</div>
 +
<div class="mod-addpic"><img style="max-width:120vmin;" src="https://static.igem.org/mediawiki/2017/3/3d/T--NKU_China--modgeneral2.png" /img></div>
 +
<div class="mod-fn">Fig3. Microbes’ transportation & plugging effect</div>
 +
<div class="mod-addpic"><img style="max-width:120vmin;" src="https://static.igem.org/mediawiki/2017/b/b3/T--NKU_China--modgeneral3.png" /img></div>
 +
<div class="mod-fn">Fig4. The fim S switch</div>
 +
<div class="mod-addpic"><img src="https://static.igem.org/mediawiki/2017/6/68/T--NKU_China--modgeneral4.png" /img></div>
 +
<div class="mod-fn">Fig5. Functions enhancing oil production</div>
 +
<div class="mod-addpic"><img src="https://static.igem.org/mediawiki/2017/e/e2/T--NKU_China--modresadd.jpg" /img></div>
 +
<div class="mod-fn">Fig 6. Result of the general model</div>
 +
</div>
 +
<div id="modtransmission_model"></div>
 +
<div class="mod-part" >
 +
<div class="mod-header">The Transmission Model</div>
 +
<div class="mod-p">To have a closer look at the process microbes are transported in the oil reservoir, we constructed a model under the condition of a porous rock media underground ,similar as the transmission of underground used water.</div>
 +
<div class="mod-subheader">Governing equation<sup>[1]<sup></div>
 +
<div class="mod-addpic"><img class="mod-photo "src="https://static.igem.org/mediawiki/2017/c/ce/T--NKU_China--modformula2.png" /img></div>
 +
<div class="mod-fn">Fig7. Governing equation</div>
 +
<div class="mod-p">Initial conditions & Boundary conditions</div>
 +
<div class="mod-addpic"><img class="mod-photo "src="https://static.igem.org/mediawiki/2017/f/f5/T--NKU_China--modformula3.png" /img></div>
 +
<div class="mod-fn">Fig8. Initial conditions & Boundary conditions</div>
 +
<div class="mod-p">where C is the fluid phase concentration, D is the effective dispersion coefficient, x is distance, t is time, v is the interstitial fluid velocity, and k is a reaction constant. A function similar to the gamma distribution is used as the initial condition, and a time-dependent boundary condition is applied at x=0, and  Ci, Ca, Cb, β, μ, and λ are constants.</div>
 +
<div class="mod-p">Here we designed an interactive part to show the result dynamically. As space is limited in this wiki, there are four short film to show how it functions.</div>
 +
<table style="width:100%;text-align:center;color:#FFFFFF;font-size:20px;line-height:1.8">
 +
    <tr>
 +
    <td colspan="2">
 +
<div style="margin-top:2vmin;margin-bottom:2vmin;">
 +
<video width="480" height="360" controls="controls">
 +
  <source src="https://static.igem.org/mediawiki/2017/3/35/T--NKU_China--General.mp4" type="video/mp4">
 +
 
 +
</video></br>General
 +
</div>
 +
        </td>
 +
    </tr>
 +
    <tr>
 +
    <td>
 +
<div style="margin-top:2vmin;margin-bottom:2vmin;">
 +
<video width="480" height="360" controls="controls">
 +
  <source src="https://static.igem.org/mediawiki/2017/5/59/T--NKU_China--Column_Length.mp4" type="video/mp4">
 +
</video></br>Column Length
 +
</div>
 +
        </td>
 +
<td>
 +
<div style="margin-top:2vmin;margin-bottom:2vmin;">
 +
<video width="480" height="360" controls="controls">
 +
  <source src="https://static.igem.org/mediawiki/2017/3/3c/T--NKU_China--Diffusivity.mp4" type="video/mp4">
 +
</video></br>Diffusivity
 +
</div>
 +
        </td>
 +
    </tr>
 +
<tr>
 +
    <td>
 +
<div style="margin-top:2vmin;margin-bottom:2vmin;">
 +
<video width="480" height="360" controls="controls">
 +
  <source src="https://static.igem.org/mediawiki/2017/a/a4/T--NKU_China--Growth_Costant.mp4" type="video/mp4">
 +
</video></br>Growth Costant
 +
</div>
 +
        </td>
 +
<td>
 +
<div style="margin-top:2vmin;margin-bottom:2vmin;">
 +
<video width="480" height="360" controls="controls">
 +
  <source src="https://static.igem.org/mediawiki/2017/f/fb/T--NKU_China--Pore_Velocity.mp4" type="video/mp4">
 +
</video></br>Pore Velocity
 +
</div>
 +
        </td>
 +
</tr>
 +
</table>
 +
</div>
 +
<div id="modFim_Switch_Model"></div>
 +
<div class="mod-part" >
 +
<div class="mod-header">The Fim Switch Model</div>
 +
<div class="mod-p">With limited data, a stochastic model is powerful enough to give results from unsteady bio-systems.That’s what we apply in our model.To make it easy to understand, we just explain the “on” and “off” state and the switch itself with three small models as follows:</div>
 +
<div class="mod-subheader">Overlook</div>
 +
<div class="mod-addpic"><img  src="https://static.igem.org/mediawiki/2017/2/28/T--NKU_China--modoverlook.png" /></div>
 +
<div class="mod-fn">Fig9. Overlook of the switch model</div>
 +
<div class="mod-subheader">Switch On</div>
 +
<div class="mod-addpic">
 +
<img style="max-height:40vmin;" src="https://static.igem.org/mediawiki/2017/4/46/T--NKU_China--modswitchon.png" />
  
<p>
+
<img style="max-height:40vmin;" src="https://static.igem.org/mediawiki/2017/b/b4/T--NKU_China--moddia1.png" />
To compete for the <a href="https://2017.igem.org/Judging/Awards">Best Model prize</a>, please describe your work on this page  and also fill out the description on the <a href="https://2017.igem.org/Judging/Judging_Form">judging form</a>. Please note you can compete for both the gold medal criterion #3 and the best model prize with this page.
+
<div class="mod-fn">Fig10. State: Switch on</div>
<br><br>
+
You must also delete the message box on the top of this page to be eligible for the Best Model Prize.
+
</p>
+
  
 
</div>
 
</div>
<div class="clear"></div>
 
  
<div class="column full_size">
+
<div class="mod-subheader">Result(Stochastic TAU-LEAP)[switch on]</div>
<h5> Inspiration </h5>
+
<div class="mod-addpic"><img style="max-height:40vmin;" src="https://static.igem.org/mediawiki/2017/1/10/T--NKU_China--modonres.png" />
<p>
+
Here are a few examples from previous teams:
+
</p>
+
<ul>
+
<li><a href="https://2016.igem.org/Team:Manchester/Model">Manchester 2016</a></li>
+
<li><a href="https://2016.igem.org/Team:TU_Delft/Model">TU Delft 2016  </li>
+
<li><a href="https://2014.igem.org/Team:ETH_Zurich/modeling/overview">ETH Zurich 2014</a></li>
+
<li><a href="https://2014.igem.org/Team:Waterloo/Math_Book">Waterloo 2014</a></li>
+
</ul>
+
  
 +
 +
<div class="mod-fn">Fig11. Result(Stochastic TAU-LEAP)[switch on]</div>
  
 
</div>
 
</div>
 +
<div class="mod-subheader">Switch Off</div>
 +
<div class="mod-addpic"><img style="max-height:50vmin;" src="https://static.igem.org/mediawiki/2017/0/03/T--NKU_China--modoffres.png" /><img style="max-height:40vmin;"src="https://static.igem.org/mediawiki/2017/3/3d/T--NKU_China--moddia2.png" /></div>
 +
<div class="mod-fn">Fig12. State: Switch off</div>
 +
<div class="mod-subheader">The switch</div>
 +
<div class="mod-addpic"><img style="max-height:50vmin;" src="https://static.igem.org/mediawiki/2017/1/16/T--NKU_China--modswi.png" />
 +
<img style="max-height:50vmin;"src="https://static.igem.org/mediawiki/2017/3/3a/T--NKU_China--moddia3.png" /></div>
 +
<div class="mod-fn">Fig13. The S switch</div>
 +
<div class="mod-subheader">Result(Stochastic TAU-LEAP)[switch]</div>
 +
<div class="mod-addpic"><img src="https://static.igem.org/mediawiki/2017/3/3a/T--NKU_China--modoffres2.png" /></div>
 +
<div class="mod-fn">Fig14. Result(Stochastic TAU-LEAP)[switch off]</div>
 +
</div>
 +
<div id="modReference"></div>
 +
<div class="mod-part" >
 +
<div class="mod-header">Reference</div>
 +
<div class="mod-p">P. Sivasankar, A. Rajesh Kanna, G. Suresh Kumar, Sathyanarayana N. Gummadi,Numerical modelling of biophysicochemical effects on multispecies reactive transport in porous media involving Pseudomonas putida for potential microbial enhanced oil recovery application,Bioresource Technology,211 (2016) 348–359.</div>
 +
 +
</div>
 +
</body>
 +
<style>
 +
 +
.backgroundblur{
 +
    filter: url(blur.svg#blur);     
 +
    -webkit-filter: blur(5px);
 +
    -moz-filter: blur(5px);
 +
    -ms-filter: blur(5px);   
 +
    filter: blur(5px);
 +
    filter: progid:DXImageTransform.Microsoft.Blur(PixelRadius=5, MakeShadow=false);
 +
    height: 110%;
 +
    width: 110%;
 +
    margin-top: -30px;
 +
    margin-left: 0px;
 +
    position: fixed;
 +
    z-index: -1;}
 +
#mod-head{
 +
font-family: "Hotpizza",serif;
 +
    text-align: center;
 +
    font-size: 60px;
 +
    width: 80vmin;
 +
    color:#FFFFFF;
 +
    padding-top:20vmin;
 +
    padding-bottom:5vmin;}
 +
.mod-part{
 +
border:5px solid white;
 +
    border-radius:70px;
 +
margin-top:15vmin;
 +
padding-bottom:5vmin;
 +
    margin-left:17vmin;
 +
margin-right:17vmin;}
 +
.mod-header{
 +
color:#FFFFFF;
 +
    font-family: 'Futura LT Medium',sans-serif;
 +
    font-size:50px;
 +
    margin-top:7vmin;
 +
text-align: center;
 +
    width:100%;
 +
    line-height:0.9;}
 +
.mod-subheader{
 +
    text-align:center;
 +
    font-family:"Georgia";
 +
font-size:30px;
 +
color:#FFFFFF;
 +
font-weight:bold;
 +
padding-top:1vmin;
 +
padding-bottom:2vmin;}
 +
.mod-p{
 +
    color:#FFFFFF;
 +
    font-family:'Futura LT Medium',sans-serif;
 +
    font-size:x-large;
 +
    margin-top:4vmin;
 +
    margin-bottom:4vmin;
 +
    margin-left:10vmin;
 +
margin-right:10vmin;
 +
    line-height: 1.2;
 +
    text-align: justify;}
 +
.mod-addpic{
 +
    width:100%;
 +
text-align:center;
 +
padding-top:3vmin;
 +
padding-bottom:3vmin;
 +
}
 +
.mod-fn{
 +
    color:#FFFFFF;
 +
    font-family:"Georgia",serif;
 +
font-size:medium;
 +
margin-bottom:1vmin;
 +
width:100%;
 +
text-align:center;
 +
}
 +
.mod-photo{
 +
  max-width:70vmax;
 +
}
 +
#mw-content-text table{
 +
    border:none;
 +
}
 +
#mw-content-text table td{
 +
    border:none;
 +
}
 +
html{
 +
    overflow-x:hidden;
  
 +
}
 +
</style>
 
</html>
 
</html>
 +
{{NKU_China/footer}}

Latest revision as of 22:45, 1 November 2017

\

Modelling
Introduction
Oil recovery is quite a huge project that requires a lot of manpower and material resources every time there is a new method to test. So it’s important to find a way to simulate the process and get the results. Fortunately, nowadays mathematics is developed enough to construct a model like a machine,putting the known parameters into it and getting the simulated results without conducting the whole experiment,which is likely to be rather complex.In our project, we just use mathematical models to have a general govern and better understand of our system’s efficiency.

The device we constructed works in a dynamic environment and compared with the diameter of the water injection well where the microbes are transported into the oil reservoir and water channel where they function,they are small enough to obey the law applied to water flow which carries them.That’s what we refer constructing the transmission mode,which helps us determine when to “wake up” our engineered microbes.And we also need to know how to “wake them up”- the behavior of fim switch is simulated.By connecting the models together, we can run the microbes virtually with no worry of time,safety and cost,which should be considered when conducting on the spot.
General Model
We employed Darcy’s Law to estimate the time cost on the arrival of microbes at the water channel.Upon arriving at the spot, we put inducer like IPTG to activated the complemented gene Bcs A,which is a gene controlling the production of cellulose knocked down in our device and operated by an operon.With the effect of cellulose,the water channel is blocked and the fim switch is activated by adding another inducer like Ara artificially.Then the switch make it possible to produce rhamnolipid in our engineered bacteria,which helps driving oil flow out with water.Thus, the efficiency of oil recovery is increased.
Governing expressions & equations
Fig1. Governing expressions & equations
Fig2. General Scan
Fig3. Microbes’ transportation & plugging effect
Fig4. The fim S switch
Fig5. Functions enhancing oil production
Fig 6. Result of the general model
The Transmission Model
To have a closer look at the process microbes are transported in the oil reservoir, we constructed a model under the condition of a porous rock media underground ,similar as the transmission of underground used water.
Governing equation[1]
Fig7. Governing equation
Initial conditions & Boundary conditions
Fig8. Initial conditions & Boundary conditions
where C is the fluid phase concentration, D is the effective dispersion coefficient, x is distance, t is time, v is the interstitial fluid velocity, and k is a reaction constant. A function similar to the gamma distribution is used as the initial condition, and a time-dependent boundary condition is applied at x=0, and Ci, Ca, Cb, β, μ, and λ are constants.
Here we designed an interactive part to show the result dynamically. As space is limited in this wiki, there are four short film to show how it functions.

General

Column Length

Diffusivity

Growth Costant

Pore Velocity
The Fim Switch Model
With limited data, a stochastic model is powerful enough to give results from unsteady bio-systems.That’s what we apply in our model.To make it easy to understand, we just explain the “on” and “off” state and the switch itself with three small models as follows:
Overlook
Fig9. Overlook of the switch model
Switch On
Fig10. State: Switch on
Result(Stochastic TAU-LEAP)[switch on]
Fig11. Result(Stochastic TAU-LEAP)[switch on]
Switch Off
Fig12. State: Switch off
The switch
Fig13. The S switch
Result(Stochastic TAU-LEAP)[switch]
Fig14. Result(Stochastic TAU-LEAP)[switch off]
Reference
P. Sivasankar, A. Rajesh Kanna, G. Suresh Kumar, Sathyanarayana N. Gummadi,Numerical modelling of biophysicochemical effects on multispecies reactive transport in porous media involving Pseudomonas putida for potential microbial enhanced oil recovery application,Bioresource Technology,211 (2016) 348–359.
 
 

Contacts

Address

Nankai University
No.94 Weijin Road, Nankai District
Tianjin, P.R.China 300071