Difference between revisions of "Team:Vilnius-Lithuania/Design"

Line 234: Line 234:
 
Since 4 other mutants had grown after the transformation, we incubated the cells overnight, purified the plasmids and cloned wild type RNA I with its wild type promoter next to each of the mutants. We then calculated the copy number of 8 samples: 4 ORI mutants and 4 ORI mutants with RNA I placed next to them.</p>
 
Since 4 other mutants had grown after the transformation, we incubated the cells overnight, purified the plasmids and cloned wild type RNA I with its wild type promoter next to each of the mutants. We then calculated the copy number of 8 samples: 4 ORI mutants and 4 ORI mutants with RNA I placed next to them.</p>
  
         <div class="plotly">
+
             <script>
+
         <div class="img-cont">
trace1 = {
+
             <img src="https://static.igem.org/mediawiki/parts/5/5c/Rnr1_promoter.png" alt="img">
  x: ['Wild type ColE1', 'ORI 1', 'ORI 1 + RNA I', 'ORI 2', 'ORI 2 + RNA I', 'ORI 3', 'ORI 3 + RNA I', 'ORI 4', 'ORI 4 + RNA I'],
+
             <div class="img-label">Figure 1. Copy number calculations of the RNA I promoter elimination mutants. Two biological replicates were performed, with 2 technical qPCR replicates each time.
  y: ['37.68', '653.21', '597.2', '1128.5', '48.54', '126.72', '59.21', '424.5', '59.51'],
+
            </div>
  error_y: {
+
        </div> 
    array: ['4.99', '318', '40', '315.46', '20.9', '33.33', '8', '87', '8'],
+
<p> </p>
    arraysrc: 'laurynas.karpus:20:e7cb99'
+
  },
+
  marker: {color: 'rgb(69, 194, 189)'},
+
  name: 'B',
+
  text: ['37.68', '653.21', '597.2', '1128.5', '48.54', '126.72', '59.21', '424.5', '59.51'],
+
  textsrc: 'laurynas.karpus:20:92440e',
+
  type: 'bar',
+
  uid: '6a45cd',
+
  xsrc: 'laurynas.karpus:20:2c46ab',
+
  ysrc: 'laurynas.karpus:20:92440e'
+
};
+
data = [trace1];
+
layout = {
+
  autosize: true,
+
  bargap: 0.26,
+
  bargroupgap: 0.21,
+
  dragmode: 'select',
+
  font: {
+
    color: 'rgb(0, 0, 0)',
+
    size: 14
+
  },
+
  hovermode: 'closest',
+
  legend: {
+
    orientation: 'v',
+
    traceorder: 'normal'
+
  },
+
  paper_bgcolor: 'rgb(255, 255, 255)',
+
  plot_bgcolor: 'rgba(255, 255, 255, 0)',
+
  showlegend: false,
+
  title: 'Copy number calculations of RNA I promoter elimination mutants',
+
  titlefont: {
+
    color: 'rgb(0, 0, 0)',
+
    family: '"Open Sans", verdana, arial, sans-serif',
+
    size: 21
+
  },
+
  xaxis: {
+
    autorange: true,
+
    range: [-0.5, 8.5],
+
    showspikes: true,
+
    title: '',
+
    titlefont: {color: 'rgb(0, 0, 0)'},
+
    type: 'category'
+
  },
+
  yaxis: {
+
    autorange: true,
+
    range: [-51.0444444444, 1522.64444444],
+
    showspikes: true,
+
    title: 'Plasmid copy number (PCN)',
+
    type: 'linear'
+
  }
+
};
+
window.onload = function(e){
+
laurynaskarpus = document.getElementById('laurynaskarpus');
+
laurynaskarpus1 = document.getElementById('laurynaskarpus1');
+
laurynaskarpus2 = document.getElementById('laurynaskarpus2');
+
Plotly.plot(laurynaskarpus, {
+
  data: data,
+
  layout: layout
+
});
+
Plotly.plot(laurynaskarpus1, {
+
  data: data,
+
  layout: layout
+
});
+
Plotly.plot(laurynaskarpus2, {
+
  data: data,
+
  layout: layout
+
});
+
}
+
</script>
+
</div>
+
             <div id="laurynaskarpus" style="width:100%;height:auto;"></div>
+
 
+
 
+
<p>Figure 1. Copy number calculations of the RNA I promoter elimination mutants. Two biological replicates were performed, with 2 technical qPCR replicates each time. </p>
+
 
<p>Firstly, ORI 1 mutant had a moderate increase in copy number (Figure 1). Yet, with RNA I next to the replicon, the copy number did not seem fall back to wild type levels. We hypothesize that the reason for this was the damage done to the RNA II gene. The damage resulted in mutant formed secondary structures no longer sufficiently interacting with inhibitory RNA I molecules. </p><p>
 
<p>Firstly, ORI 1 mutant had a moderate increase in copy number (Figure 1). Yet, with RNA I next to the replicon, the copy number did not seem fall back to wild type levels. We hypothesize that the reason for this was the damage done to the RNA II gene. The damage resulted in mutant formed secondary structures no longer sufficiently interacting with inhibitory RNA I molecules. </p><p>
 
ORI 3 did not seem to increase much in copy number. We did not consider it to be a good candidate as well, because we wanted our core synthetic ori to possess a range of copy numbers to choose from. </p><p>
 
ORI 3 did not seem to increase much in copy number. We did not consider it to be a good candidate as well, because we wanted our core synthetic ori to possess a range of copy numbers to choose from. </p><p>
Line 326: Line 252:
 
<p>We have discovered the sequence of wild type RNA I promoter by using PromoterHunter. and ordered a wild type RNA I gene from IDT without the promoter’s sequence. We have first cloned series of anderson promoters next to the RNA I gene and then placed this construct next to RNA II (RNA II-Anderson-RNA I).</p>
 
<p>We have discovered the sequence of wild type RNA I promoter by using PromoterHunter. and ordered a wild type RNA I gene from IDT without the promoter’s sequence. We have first cloned series of anderson promoters next to the RNA I gene and then placed this construct next to RNA II (RNA II-Anderson-RNA I).</p>
  
         <div class="plotly">
+
 
             <script>
+
         <div class="img-cont">
trace1 = {
+
             <img src="https://static.igem.org/mediawiki/parts/d/d6/RNA_I_anderson.png" alt="img">
  x: ['RNA II with ColE1 RNAI', '0.15 Anderson', '0.36 Anderson', '0.86 Anderson', '1.0 Anderson'],
+
            <div class="img-label">Figure 2. RNA I and RNA II constructs, with RNA I constructs under different-strength Anderson (See anderson collection here http://parts.igem.org/Promoters/Catalog/Anderson ) promoters.
  y: ['48.54', '296.28', '126.28', '41.48', '21'],
+
            </div>
  error_y: {
+
        </div>
    array: ['20.9', '44', '17', '9.11', '6.84'],
+
    arraysrc: 'laurynas.karpus:2:e7cb99'
+
  },
+
  marker: {color: 'rgb(69, 194, 189)'},
+
  name: 'B',
+
  type: 'bar',
+
  uid: '6a45cd',
+
  xsrc: 'laurynas.karpus:2:2c46ab',
+
  ysrc: 'laurynas.karpus:2:92440e'
+
};
+
data = [trace1];
+
layout = {
+
  autosize: true,
+
  bargap: 0.26,  
+
  bargroupgap: 0.21,
+
  dragmode: 'select',
+
  font: {
+
    color: 'rgb(0, 0, 0)',
+
    size: 17
+
  },
+
  hovermode: 'closest',
+
  legend: {
+
    orientation: 'v',
+
    traceorder: 'normal'
+
  },
+
  paper_bgcolor: 'rgb(255, 255, 255)',
+
  plot_bgcolor: 'rgba(255, 255, 255, 0)',
+
  showlegend: false,
+
  title: 'SynORI constitutive copy number device with different anderson promoter strengths',
+
  titlefont: {
+
    color: 'rgb(0, 0, 0)',
+
    family: '"Open Sans", verdana, arial, sans-serif',
+
    size: 21
+
  },
+
  xaxis: {
+
    autorange: true,
+
    range: [-0.5, 4.5],
+
    showspikes: true,
+
    title: '',
+
    titlefont: {color: 'rgb(0, 0, 0)'},
+
    type: 'category'
+
  },
+
  yaxis: {
+
    autorange: true,
+
    range: [-3.95777777778, 358.397777778],
+
    showspikes: true,
+
    title: 'Plasmid copy number (PCN)',
+
    type: 'linear'
+
  }
+
};
+
window.onload = function(e){
+
laurynaskarpus1 = document.getElementById('laurynaskarpus1');
+
Plotly.plot(laurynaskarpus1, {
+
  data: data,
+
  layout: layout
+
});
+
}
+
</script>
+
</div>
+
            <div id="laurynaskarpus1" style="width:100%;height:auto;"></div>
+
  
  
<p>Figure 2. RNA I and RNA II constructs, with RNA I constructs under different-strength Anderson (See anderson collection here http://parts.igem.org/Promoters/Catalog/Anderson ) promoters.</p>
 
 
<p>In theory (see "Modelling" for more details), lower-strength Anderson promoters should yield lower concentrations of RNA I, hence higher copy numbers of plasmids per cell.  Our constitutive copy number device experiment results prove it to be true in practice as well. The stronger Anderson promoter is used, the less copy number per cell we get. With the strongest Anderson we get only 21+-6.84 plasmids per cell. </p><p>
 
<p>In theory (see "Modelling" for more details), lower-strength Anderson promoters should yield lower concentrations of RNA I, hence higher copy numbers of plasmids per cell.  Our constitutive copy number device experiment results prove it to be true in practice as well. The stronger Anderson promoter is used, the less copy number per cell we get. With the strongest Anderson we get only 21+-6.84 plasmids per cell. </p><p>
 
Worth to mention is that the closest to wild type ColE1 replicon is the 0.86 strength Anderson promoter, measured by copy number alone. (<a href="http://parts.igem.org/Part:BBa_J23102>Part:BBa_J23102</a>)</p><p>
 
Worth to mention is that the closest to wild type ColE1 replicon is the 0.86 strength Anderson promoter, measured by copy number alone. (<a href="http://parts.igem.org/Part:BBa_J23102>Part:BBa_J23102</a>)</p><p>
Line 401: Line 266:
 
For this experiment we have built a rhamnose and RNA I construct (<a href="http://parts.igem.org/Part:BBa_K2259065">Part:BBa_K2259065</a>) and then cloned this construct next to RNA II (<a href="http://parts.igem.org/Part:BBa_K2259091">Part:BBa_K2259091</a>). We have used different percent of rhamnose in our media in order to see if this approach was possible and if so, to figure out the dependency between the plasmid copy number and rhamnose concentration.</p>
 
For this experiment we have built a rhamnose and RNA I construct (<a href="http://parts.igem.org/Part:BBa_K2259065">Part:BBa_K2259065</a>) and then cloned this construct next to RNA II (<a href="http://parts.igem.org/Part:BBa_K2259091">Part:BBa_K2259091</a>). We have used different percent of rhamnose in our media in order to see if this approach was possible and if so, to figure out the dependency between the plasmid copy number and rhamnose concentration.</p>
  
        <div class="plotly">
+
   
            <script>
+
RHAMNOSE GRAFIKA
trace1 = {
+
  x: ['0', '', '0.2', '0.4', '0.6', '0.8', '1'],
+
  y: ['8.49', '', '3.7', '2.02', '2', '1', '1'],
+
  error_y: {
+
    array: ['1.347', '', '1.7', '1', '1', '0.7', '0.8'],
+
    arraysrc: 'laurynas.karpus:8:e7cb99'
+
  },
+
  marker: {color: 'rgb(69, 194, 189)'},
+
  name: 'B',
+
  text: ['8.49', '', '3.7', '2.02', '2', '1', '1'],
+
  textsrc: 'laurynas.karpus:8:92440e',
+
  type: 'bar',
+
  uid: '6a45cd',
+
  xsrc: 'laurynas.karpus:8:2c46ab',
+
  ysrc: 'laurynas.karpus:8:92440e'
+
};
+
data = [trace1];
+
layout = {
+
  autosize: true,
+
  bargap: 0.26,
+
  bargroupgap: 0.21,
+
  dragmode: 'select',
+
  font: {
+
    color: 'rgb(0, 0, 0)',
+
    size: 17
+
  },
+
  hovermode: 'closest',
+
  legend: {
+
    orientation: 'v',
+
    traceorder: 'normal'
+
  },
+
  paper_bgcolor: 'rgb(255, 255, 255)',
+
  plot_bgcolor: 'rgba(255, 255, 255, 0)',
+
  showlegend: false,
+
  title: 'SynORI inducible plasmid copy number device with different rhamnose concentrations',
+
  titlefont: {
+
    color: 'rgb(0, 0, 0)',
+
    family: '"Open Sans", verdana, arial, sans-serif',
+
    size: 21
+
  },
+
  xaxis: {
+
    autorange: true,
+
    range: [-0.1, 1.1],
+
    showspikes: true,
+
    title: 'Rhamnose, %',
+
    titlefont: {color: 'rgb(0, 0, 0)'},
+
    type: 'linear'
+
  },
+
  yaxis: {
+
    autorange: true,
+
    range: [-0.335388888889, 10.3723888889],
+
    showspikes: true,
+
    title: 'Plasmid copy number (PCN)',
+
    type: 'linear'
+
  }
+
};
+
window.onload = function(e){
+
laurynaskarpus2 = document.getElementById('laurynaskarpus2');
+
Plotly.plot(laurynaskarpus2, {
+
  data: data,
+
  layout: layout
+
});
+
}
+
</script>
+
  </div>
+
            <div id="laurynaskarpus2" style="width:100%;height:auto;"></div>
+
 
+
  
 
<p>Figure 3. RNA I and RNA II constructs, with RNA I gene being under the rhamnose promoter. </p>
 
<p>Figure 3. RNA I and RNA II constructs, with RNA I gene being under the rhamnose promoter. </p>

Revision as of 03:03, 2 November 2017

use keyboard, swipe or scroll

Determining the plasmid copy number

Design and Results

Preparing for the framework: standard curve generation and plasmid copy number evaluation.

read more