Difference between revisions of "Team:UESTC-China/description"

 
(40 intermediate revisions by 3 users not shown)
Line 5: Line 5:
 
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
 
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
 
<meta http-equiv="X-UA-Compatible" content="ie=edge" />
 
<meta http-equiv="X-UA-Compatible" content="ie=edge" />
<title>Team:UESTC-China/Introduction</title>
+
<title>Team:UESTC-China/Introduction - 2017.igem.org</title>
  
<link rel="stylesheet" href="http://cdn.static.runoob.com/libs/bootstrap/3.3.7/css/bootstrap.min.css">
+
<link rel="stylesheet" href="https://2017.igem.org/Template:UESTC-China/css/bootstrap?action=raw&ctype=text/css">
<script src="http://cdn.static.runoob.com/libs/jquery/2.1.1/jquery.min.js"></script>
+
<script src="https://2017.igem.org/Template:UESTC-China/js/jquery?action=raw&ctype=text/javascript"></script>
<script src="http://cdn.static.runoob.com/libs/bootstrap/3.3.7/js/bootstrap.min.js"></script>
+
<script src="https://2017.igem.org/Template:UESTC-China/js/bootstrap-js?action=raw&ctype=text/javascript"></script>
 +
<script src="https://2017.igem.org/Template:UESTC-China/js/back-to-top?action=raw&ctype=text/javascript"></script>
  
<link rel="stylesheet" href="https://2017.igem.org/Template:UESTC-China/css/styleset?action=raw&ctype=text/css" />
+
<link rel="stylesheet" href="https://2017.igem.org/Template:UESTC-China/css/styleset?action=raw&ctype=text/css" />
<link rel="stylesheet" type="text/css" href="https://2017.igem.org/Template:UESTC-China/css/Safety?action=raw&ctype=text/css" />
+
<link rel="stylesheet" type="text/css" href="https://2017.igem.org/Template:UESTC-China/css/common-use?action=raw&ctype=text/css" />
 +
 
 +
<!--<link rel="stylesheet" type="text/css" href="css/template.css" />-->
 +
<style type="text/css">
 +
.col-lg-10 .mid {
 +
margin: 5px 0 !important;
 +
font-size: 14px !important;
 +
}
 +
</style>
  
 
<script type="text/javascript">
 
<script type="text/javascript">
Line 59: Line 68:
 
<div class="head-v3">
 
<div class="head-v3">
 
<div class="nav-up">
 
<div class="nav-up">
<a href="https://2017.igem.org/Team:UESTC-China/hhh">
+
<a href="https://2017.igem.org/Team:UESTC-China">
 
<img src="https://static.igem.org/mediawiki/2017/3/3c/T--UESTC-China--logo.jpg" alt="" class="logo" />
 
<img src="https://static.igem.org/mediawiki/2017/3/3c/T--UESTC-China--logo.jpg" alt="" class="logo" />
 
</a>
 
</a>
Line 67: Line 76:
  
 
<ul>
 
<ul>
<!--<li class="nav-up-selected-inpage" _t_nav="home">
 
<h2><a href="#">首页</a></h2>z
 
</li>-->
 
 
 
<li class="" _t_nav="Achievement">
 
<li class="" _t_nav="Achievement">
<h2><a href="https://2017.igem.org/Team:UESTC-China/achievement">Achievement</a></h2>
+
<h2><a href="https://2017.igem.org/Team:UESTC-China/achievement">ACHIEVEMENT</a></h2>
 
</li>
 
</li>
  
 
<li class="" _t_nav="Project">
 
<li class="" _t_nav="Project">
<h2><a href="javascript:void(0);">Project ∨</a></h2>
+
<h2><a href="javascript:void(0);">PROJECT ∨</a></h2>
 
</li>
 
</li>
  
<li class="Modeling" _t_nav="Modeling">
+
<li class="" _t_nav="Modeling">
<h2><a href="https://2017.igem.org/Team:UESTC-China/modeling">Modeling ∨</a></h2>
+
<h2><a href="https://2017.igem.org/Team:UESTC-China/Model">MODELING</a></h2>
 
</li>
 
</li>
  
 
<li class="" _t_nav="Attribution">
 
<li class="" _t_nav="Attribution">
<h2><a href="https://2017.igem.org/Team:UESTC-China/attribution">Attribution</a></h2>
+
<h2><a href="https://2017.igem.org/Team:UESTC-China/Attributions">ATTRIBUTIONS</a></h2>
 
</li>
 
</li>
  
 
<li class="" _t_nav="HumanPractice">
 
<li class="" _t_nav="HumanPractice">
<h2><a href="javascript:void(0);">Human Practice ∨</a></h2>
+
<h2><a href="javascript:void(0);">HUMAN PRACTICE ∨</a></h2>
 
</li>
 
</li>
  
 
<li class="" _t_nav="Team">
 
<li class="" _t_nav="Team">
<h2><a href="javascript:void(0);">Team ∨</a></h2>
+
<h2><a href="javascript:void(0);">TEAM ∨</a></h2>
 
</li>
 
</li>
  
 
<li class="" _t_nav="Notebook">
 
<li class="" _t_nav="Notebook">
<h2><a href="javascript:void(0);">Notebook ∨</a></h2>
+
<h2><a href="javascript:void(0);">NOTEBOOK ∨</a></h2>
 
</li>
 
</li>
 
</ul>
 
</ul>
Line 106: Line 111:
 
<div id="Project" class="nav-down-menu" style="display: none;" _t_nav="Project">
 
<div id="Project" class="nav-down-menu" style="display: none;" _t_nav="Project">
 
<div class="nav-down-inner">
 
<div class="nav-down-inner">
<dl style="margin-right: 702px;">
+
<dl style="margin-right: 670px;">
 
<dd>
 
<dd>
 
<a class="link" href="https://2017.igem.org/Team:UESTC-China/part">Part</a>
 
<a class="link" href="https://2017.igem.org/Team:UESTC-China/part">Part</a>
Line 113: Line 118:
 
<dl>
 
<dl>
 
<dd>
 
<dd>
<a class="link" href="https://2017.igem.org/Team:UESTC-China/result">Results</a>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/Demonstrate">Demonstrate</a>
 
</dd>
 
</dd>
 
</dl>
 
</dl>
Line 123: Line 128:
 
<dl>
 
<dl>
 
<dd>
 
<dd>
<a class="link" href="https://2017.igem.org/Team:UESTC-China/description">Description</a>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/description">Introduction</a>
 
</dd>
 
</dd>
 
</dl>
 
</dl>
Line 129: Line 134:
 
</div>
 
</div>
  
<div id="Modeling" class="nav-down-menu" style="display: none;" _t_nav="Modeling">
+
<!--<div id="Modeling" class="nav-down-menu" style="display: none;" _t_nav="Modeling">
 
<div class="nav-down-inner">
 
<div class="nav-down-inner">
 
<dl style="margin-right: 565px;">
 
<dl style="margin-right: 565px;">
Line 157: Line 162:
 
</dl>
 
</dl>
 
</div>
 
</div>
</div>
+
</div>-->
  
 
<div id="HumanPractice" class="nav-down-menu" style="display: none;" _t_nav="HumanPractice">
 
<div id="HumanPractice" class="nav-down-menu" style="display: none;" _t_nav="HumanPractice">
 
<div class="nav-down-inner">
 
<div class="nav-down-inner">
<dl style="margin-right: 270px;">
+
<dl style="margin-right: 250px;">
 
<dd>
 
<dd>
<a class="link" href="https://2017.igem.org/Team:UESTC-China/hp-collaboration">Collaboration</a>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/Engagement">Engagement</a>
 
</dd>
 
</dd>
 
</dl>
 
</dl>
 
<dl>
 
<dl>
 
<dd>
 
<dd>
<a class="link" href="https://2017.igem.org/Team:UESTC-China/engagement">Engagement</a>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/research">Supporting Research</a>
</dd>
+
</dl>
+
<dl>
+
<dd>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/integrated">Research</a>
+
 
</dd>
 
</dd>
 
</dl>
 
</dl>
Line 186: Line 186:
 
<div id="Team" class="nav-down-menu" style="display: none;" _t_nav="Team">
 
<div id="Team" class="nav-down-menu" style="display: none;" _t_nav="Team">
 
<div class="nav-down-inner">
 
<div class="nav-down-inner">
<dl style="margin-right: 128px;">
+
<dl style="margin-right: 115px;">
 
<dd>
 
<dd>
<a class="link" href="https://2017.igem.org/Team:UESTC-China/collaboration">Collaboration</a>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/Collaborations">Collaborations</a>
 
</dd>
 
</dd>
 
</dl>
 
</dl>
Line 201: Line 201:
 
<div id="Notebook" class="nav-down-menu" style="display: none;" _t_nav="Notebook">
 
<div id="Notebook" class="nav-down-menu" style="display: none;" _t_nav="Notebook">
 
<div class="nav-down-inner">
 
<div class="nav-down-inner">
<dl style="margin-right: 37px;">
+
<dl style="margin-right: 36px;">
 
<dd>
 
<dd>
<a class="link" href="https://2017.igem.org/Team:UESTC-China/interlab">Interlab</a>
+
<a class="link" href="https://2017.igem.org/Team:UESTC-China/InterLab">Interlab</a>
 
</dd>
 
</dd>
 
</dl>
 
</dl>
Line 214: Line 214:
 
<dd>
 
<dd>
 
<a class="link" href="https://2017.igem.org/Team:UESTC-China/protocal">Protocal</a>
 
<a class="link" href="https://2017.igem.org/Team:UESTC-China/protocal">Protocal</a>
 +
</dd>
 +
</dl>
 +
<dl>
 +
<dd>
 +
<a class="link" href="https://2017.igem.org/Team:UESTC-China/Plant">Plant</a>
 
</dd>
 
</dd>
 
</dl>
 
</dl>
Line 228: Line 233:
  
 
<!--************下面为正文******************-->
 
<!--************下面为正文******************-->
<p><img src="https://static.igem.org/mediawiki/2017/7/79/--UESTC-China--placeholder_description.jpg" alt="" class="hhh" /></p>
+
<p><img src="https://static.igem.org/mediawiki/2017/9/92/T--UESTC-China--head_introduction.jpg" alt="" class="hhh" /></p>
  
 
<div class="container">
 
<div class="container">
 
<div class="row">
 
<div class="row">
 
<nav class="col-lg-2" id="myScrollspy">
 
<nav class="col-lg-2" id="myScrollspy">
<ul class="nav nav-pills nav-stacked" data-spy="affix" data-offset-top="400">
+
<ul class="nav nav-pills nav-stacked" data-spy="affix" data-offset-top="475">
 
<li class="active">
 
<li class="active">
 
<a href="#Overview">Overview</a>
 
<a href="#Overview">Overview</a>
 
</li>
 
</li>
 +
<li> <a href="#Harm">Distributions of TCP</a> </li>
 +
<li> <a href="#Technology">Ways to solve </a> </li>
 +
<li> <a href="#Strategy">Our super tobacco</a> </li>
 
<li>
 
<li>
<a href="#TCP-Pollution">1,2,3-TCP Pollution</a>
+
<a href="#References">References</a>
</li>
+
<li>
+
<a href="#Phytodegradation">Phytodegradation</a>
+
</li>
+
<li>
+
<a href="#Our-Pathway">Our Pathway</a>
+
 
</li>
 
</li>
 
</ul>
 
</ul>
 
</nav>
 
</nav>
  
<div class="col-lg-10">
+
<div class="col-lg-10" id="new-style">
 
<div id="Overview">
 
<div id="Overview">
 
<h2>Overview</h2>
 
<h2>Overview</h2>
<br /><p>化学工业的进步给我们的生活带来了巨大的便利,许多功能近乎于“魔法”的产品纷纷被生产出来。但是,化学工业为我们带来便利的同时,无形中也让我们付出了巨大的代价。大量的化学污染物通过各种途径被排放出来,污染我们的环境。其中,有机氯化在这些污染物中占有很大一部分的比例。我们队伍今年的项目是针对1,2,3 三氯丙烷——一种不太受关注但威胁越来越重的一种人工合成的有机氯化物。我们打算通过往烟草中转入一种三酶体系的质粒来有效降解1,2,3-三氯丙烷。</p>
+
<p>The progress of the chemical industry and agriculture has brought great convenience to our lives. But a large number of chemical pollutants which were toxic and difficult to degrade have been discharged to the rivers and soils, seriously polluting our environment. Xenobiotic organohalognse played a large part among all the chemical pollutants. After collecting a questionnaire for industrial and agricultural producers and doing a soil research in most areas of China, our team aimed at degrading an organic chloride, 1,2,3-Trichloropropane (1,2,3-TCP), which was less concerned by environmental protection department. In this summer, we decided to use synthetic biology to achieve plant degradation of 1,2,3-Trichloropropane by transferring three enzymes into tobacco which is environmentally friendly and the product, glycerol, is recyclable in tobacco.</p>
 
</div>
 
</div>
  
<div id="TCP-Pollution">
+
<div id="Harm">
<h2>The 1,2,3- TCP pollution</h2>
+
<h2>The distributions of pollutant 1,2,3-TCP</h2>
<br /><p>1,2,3-tcp是一种新兴的有机污染物,它的化学性质稳定并且具有突变、致病、致癌等毒害作用。物理性质上则表现为不易容易溶于水,且密度比水大。在工业上经常单独用作工业溶剂、脱脂剂、脱漆剂等,同时也作为二氯丙烯、环氧氯丙烷等化工厂产品的中间体或者副产物出现。其最早的污染记载是1940s作为陶氏化学和壳牌公司生产的土壤蒸熏剂的成分被播撒到加州各地的农田中</p>
+
<br /><p class="pic"><img src="https://static.igem.org/mediawiki/2017/3/34/T--UESTC-China--introduction_1.png" style="width: 40%;"/></p>
+
  <p>1,2,3-TCP is an emerging organic pollutant which is usually been used as industrial solvents[1] and raw materials for producing 1,1,2,3-Tetrachloropropene or other chemicals substances[2]. In agriculture, it has been used as one of the ingredients of soil fumigants and it is also a harmful byproduct of other pesticides. The global production of 1,2,3-TCP reached about 50,000 tons annually[3]. Because 1,2,3-TCP is hard to degrade naturally in the environment, it would cause a huge damage to the groundwater and the soil if discharged casually.</p>  
<br /><p>自1970s以来陆续在美国、日本等发达国家的饮用水中检测到该成分,但由于一直未确定其致癌性且含量不高所以一直未受到重视。但近10年来各地饮用水中检测到tcp的次数增加,其毒性和致癌性的关注度开始提升,美国环保署和国防部视其为“新兴污染物”。Tcp微溶于水,且密度比水大。这意味其一旦进入环境中便会不断在土壤中下渗并且很可能进入地下水中。曾有人在中国河北省一座70年代短暂运行过的化工厂附近进行过土壤调查,采集了大约5~15米处的土壤和地下水样品。在这些样品中都发现了浓度不低的tcp,最高浓度甚至可以达到3890mg/KG。这一方面表现了1,2,3-TCP 的稳定性,可以在自然界中存在四十而不降解。另一方面,深入地下10几米也体现了其密度较大、易渗透的特性。该调查和相关其他研究都证明了tcp在底下环境难以自然降解,可以在土壤和地下水中存在数十年。</p>
+
                                          <p>One of the most serious pollution of 1,2,3-TCP was discovered in California. It has spread to all over the California since the 1940s when Dow Chemical and Shell started selling two soil fumigants (D-D and Telone) which include 1,2,3-TCP. Although 1,2,3-TCP was banned to use as soil fumigants in the 1990s, there was still a large amount of 1,2,3-TCP remained, to be a threat to the environment and people's lives seriously[4].</p>  
<br /><p style="color: red;">这种现象是非常值得引起重视的,它稳定、易渗透的特性使得其一旦不被及时处理,便会慢慢渗入土壤深处,使其变得难以处理。</p>
+
                                       
<br /><p class="pic"><img src="https://static.igem.org/mediawiki/2017/0/01/T--UESTC-China--introduction_2.jpg" style="width: 60%;"/></p>
+
  <p class="pic"><img src="https://static.igem.org/mediawiki/2017/7/7c/T--UESTC-China--description_1.jpg" style="width: 55%;"/></p>
<br /><p style="color: red;">并且tcp有高的迁移率,接近地下水的迁移速度。这代表着tcp极易扩散进入我们的生活区域和生活用水中。所以处理排放到自然界的1,2,3-tcp的最佳时机就是在其排放时间不是很久,还停留土壤表面或者浅层时就开始处理。</p>
+
  <p class="mid">Figure 1. Water systems where significant levels of the 1,2,3-TCP have been detected in California</p>
<br /><p>但遗憾的是,世界各地对它的重视还远远不够,在美国只有夏威夷、加州等地出台了相关的排放标准。而在中国,tcp甚至没有被列入水质检测物质的名单中!<span style="color: red;">也正是了解到这个因素,我们队伍一方面设计了这种带有三酶体系的烟草来降解土壤中的1,2,3-tcp,从技术思考解决问题的方案。</span>另一方面希望通过通过自身的宣传和iGEM比赛的影响力引起社会的重视,在tcp还没对社会造成更大危害之前及时遏制事态的发展!</p>
+
<p>Dr. Yong Qian from University of Geosciences of China has explored the behavior of 1,2,3-TCP in the groundwater. He found 1,2,3-TCP still huge concentration (3890mg / L) underground in an abandoned factory that was only run from 1976 to 1979 in 2016 [5], which showed the great stability of 1,2,3-TCP in the groundwater and soil (Fig. 2). </p>
 +
<p class="pic"><img src="https://static.igem.org/mediawiki/2017/8/8b/T--UESTC-China--222.png" style="width: 60%;"/></p>
 +
  <p class="mid">Figure 2. The distribution of underground 1,2,3-TCP pollution in this factory [5].</p>
 +
<p>Meanwhile, some studies showed that the adhesion coefficient of 1,2,3-TCP is very low[5]. It means that 1,2,3-TCP can be easily diffused into our daily use water. Its potential carcinogenicity and damage to kidney will threaten the health of human beings. In the recent past 10 years, more and more tests showing the existence of 1,2,3-TCP among worldwide drinking water is a sound proof (Fig. 3). </p>
 +
<p class="pic"><img src="https://static.igem.org/mediawiki/2017/4/4b/T--UESTC-China--description_3.png" style="width: 90%;"/></p>
 +
  <p class="mid">Figure 3. 1,2,3-TCP has been detected in hundreds of surface water and drinking water sources </p>
 +
<p>Based on the above information, 1,2,3-TCP is absolutely a threatening pollutant. However, attentions are far more than enough to be paid on 1,2,3-TCP; and a lot of countries have not put 1,2,3-TCP as the test list of water quality. Since the current situation has been known to us, our team hopes to find a feasible way to stop 1,2,3-TCP by attracting the attentions of the whole society through doing advertisement and iGEM competition before it might cause great damage to the health of human beings. </p>
 
</div>
 
</div>
  
<div id="Phytodegradation">
+
<div id="Technology">
<h2>Why does we choose Phytodegradation</h2>
+
  <h2>Ways to solve the pollution of 1,2,3-TCP</h2>
<br /><p>目前处理1,2,3-tcp 的主要常规方法有 活性炭吸附法、hydrogen release compound (HRC)、零价锌三种。但是活性炭吸附法吸收效率较低且作用缓慢。而HRC、零价锌等方法价格比较昂贵,且所需条件较多,不适合投入到环境复杂的自然界中,目前只是在用于实验室环境中。</p>
+
  <p>Then the question is how to solve the problem of 1,2,3-TCP pollution? Traditional methods to deal with 1,2,3-TCP includes granular activated carbon (GAC)、hydrogen release compound (HRC)、reductive dechlorination by zero valent iron(ZVI) and son on[6]~[8]. However, some of these methods are either too inefficient or too expensive to be used within natural conditions (Fig. 4). </p>
<br /><p>所以在常规理化方法难以使用的情况下,利用生物1,2,3 tcp 的方法开始受到重视。作为最近社会上越来越受重视的“绿色修复”生物降解污染物(尤其是在天然条件下)越来越被人们所推崇。由于一些早期研究表明 1,2,3 tcp 可能在以O2为电子受体的氧化共代谢作用下通过生物作用转化为C〇2、H20和HC1,所以人们注意力主要集中在好氧微生物中。但是到目前为止,对能降解1,2,3 tcp的好氧微生物的富集和筛选都失败。反而在厌氧微生物中发现几个菌种可以在绝对厌氧的环境中可降解tcp,但是由于条件比较严苛,所以没能获得其转化的效率。而在最近几年有研究开始使用基因工程的方法获取能够降解tcp的微生物。如samin在恶臭假单胞菌中引入烷基脱氢霉素,对tcp的降解效率达到95%之高,可以说降解效率非常高。但是它的缺点也非常明显。首先,微生物降解污染常常是通过制作相关的生物反应器,这往往需要保持较大的菌群密度和连续的营养输入。而在实际使用中往往面对复杂的环境和当地菌群的竞争,在该种情况下完成这些目前耗费往往不小。其次,恶臭假单胞菌是一种致病菌,可能会导致人类和鱼类染病。再者它的降解终产物为会对环境产生二次污染的氯化物。所以通过微生物降解tcp以改善环境的行为在现有条件下是难以实现的。</p>
+
  <p class="pic"><img src="https://static.igem.org/mediawiki/2017/3/34/T--UESTC-China--description_4.jpg" style="width: 95%;"/></p>
<br /><p>基于以上考虑,我们决定使用植物作为载体来降解tcp。这个决定也正好与现下推崇的“植物修复”(Phytoremediation)的概念。植物修复比微生物通常生物修复的优点是作为具有大生物量的自养系统的植物只需要适度的营养输入就可以持久有效的处理污染物,应用和简单管理相对便宜。并且植物侵入性较差,在清理环境的同时还可以碳封存和土壤稳定以提供美观环境和野生动物栖息地。再者,用于植物修复的植物材料可以再加工成木片,纸浆,甚至某些对某些处理重金属的植物进行处理,将重金属回收。</p>
+
  <p class="mid">Figure 4. Treatability tests with 1,2,3-TCP-contaminated groundwater/soil</p>
<br /><p>“植物修复”主要是有四种方式:植物萃取、植物挥发、植物固定和植物降解。</p>
+
  <p>Since 1,2,3-TCP can hardly be dealt with traditional ways, Microbial remediation of 1,2,3-TCP is getting praised. Early studies have shown that 1,2,3-TCP can be converted into CO<sub>2</sub>、H<sub>2</sub>O and HCl by biological catalysis through Oxidation of metabolic mechanism with O<sub>2</sub>. So people are trying to find degradation method by using aerobe. But until now, all the tests to gather and filtrate aerobe to degrade 1,2,3-TCP have failed. However, scientists have found a few categories of bacteria that can degrade 1,2,3-TCP in absolute anaerobic environment. However, due to its strict requirement, the conversion efficiency is not high enough to get popular. In recent years, some studies have started to apply genetic engineering method to inject some enzymes in the seek of 1,2,3-TCP degradation. Some good results have been obtained but with some limitations. Firstly, these bacteria require very strict nutrition requirement and there only exits weak competition among them. Secondly, the diffusion of antibiotic resistance gene can be easily triggered. Finally, this method rely heavily on some specific induction condition[9]. We are not satisfied with these disadvantages and thus we hope to find a 1,2,3-TCP degradation method that is energy-efficient and sustainable. The burgeoning “Phytoremediation” has come into our attention. </p>
<br /><p class="pic"><img src="https://static.igem.org/mediawiki/2017/f/f4/T--UESTC-China--introduction_3.jpg" style="width: 85%;"/></p>
+
<br /><p>通过tcp理化性质的了解,我们的得知tcp通常不能在生物中富集,且其吸附力非常低易于迁移,所以难以通过萃取和固定的方式进行处理。况且如果采用植物萃取和植物固定的方式,就要经常对植物进行处理和更换。这些都是需要建立一套完整的后续处理体系,耗时耗力。而植物挥发就更不在考虑的范围内了,tcp本身便可以通过吸入的方式对人类造成严重伤害,所以这种方式根本不可能投入自然界中使用。由此看来,最后可选的方式便只有植物降解这一种了。</p>
+
 
</div>
 
</div>
  
<div id="Our-Pathway">
+
<div id="Strategy">
<h2>Our pathway to degradation 1,2,3-TCP</h2>
+
  <h2>Our super tobacco</h2>
<br /><p>选定采用植物降解这一策略后,我们便开始查找可用的降解TCP的通路。最后我们发现了Dvorak 等人在2014提出的通过固定化 氯代烷烃脱氯素酶(突变体)、氯代醇脱氯素酶和环氧化物酶(DhA31、HheC、EchA)三种酶降解tcp。</p>
+
  <p>As one of the new “Green remediation” strategy,phytoremediation shows enormous potential. Compared to microbial remediation, the most important advantage of phytoremediation is that phytoremediation comes with the potential to dispose pollutants by small amount of nutrition input. This is due to its unique feature of photosynthetic autotrophs system. By doing pollutant disposition, at the same time, plants can also help stabilize the soil, purify the water and clear air pollution[10]~[11]. There are four different ways of “Phytoremediation”: phytoextraction、phytostabilization、phytovolatilization and phytodegradation (Fig. 5). </p>
<br /><img src="https://static.igem.org/mediawiki/2017/0/0d/T--UESTC-China--introduction_4.png" style="width: 50%;"/>
+
<p class="pic"><img src="https://static.igem.org/mediawiki/2017/f/f6/T--UESTC-China--plrecover.jpg" style="width:80% ;padding-top: 7%;"/></p>
<img src="https://static.igem.org/mediawiki/2017/e/ed/T--UESTC-China--introduction_5.png" style="width: 40%;"/>
+
  <p class="mid">Figure 5. The main models of phytoremediation strategy.</p>
<br /><p>该体系将tcp最终转化对环境无害的甘油,其最终转化效率为78%,转化为中间体的效率可以到到98%。这是我们目前能找到的降解tcp且终产物无害的最高效率,因此我们决定将该途径通过基因工程的方式转入到模式植物烟草中。在烟草中搭建体系主要是考虑到其生长就有强大的积极性。并且烟草作为一种模式生物,对基因表达和生长调控方面有相当数量的研究,具有一套成熟的遗传转化以及培养体系。因为这几种酶全部来源于原核生物中,没有在植物中发现过。在一个成熟的模式植物中进行尝试可以更加容易发现问题并且进行改进,也为以后我们在其他植株中进行尝试提供数据与方法。而谈到实际的使用,考虑到烟草生长的节律性等因素。我们可以在工厂的排放地以及一些污染较严重的地方集中种植并且对其生长条件进行一定的调控,形成规模效应以实现对1,2,3-tcp 的快速、大量的降解。对比需要完整的后续体系和投入的微生物修复技术,这样的方式无疑是持久、长效并且廉价的。</p>
+
  <p>By understanding the physical and chemical properties of 1,2,3-TCP, we know that 1,2,3-TCP normally can not gather in living things and is easily to migrate due to its low adhesion. This makes it hard to deal with 1,2,3-TCP using the strategy of extraction and fixation. Moreover, phytostabilization and phytovolatilization requires frequent disposition and change of plants. This furthers requests to build another complete time and labor consuming system. phytoextraction won’t be taken into our consideration since 1,2,3-TCP can cause severe damage to human health by breathing. Therefore, we choose to use the strategy of phytodegradation to degrade 1,2,3-TCP into glycerol by creating super tobacco.</p>
<br /><br />
+
 
</div>
 
</div>
</div>
+
 +
  <div id="References">
 +
    <h2>References</h2>
 +
    <ol>
 +
    <li>EPA. Technical Fact Sheet – 1,2,3-Trichloropropane (1,2,3-TCP), 2017.</li>
 +
    <li>Liu FS. The comprehensive utilization of 1,2,3-Trichloropropane. Speciality Petrochemicals, 1995;2:11-4.</li>
 +
    <li>Samin G, Janssen DB. Transformation and biodegradation of 1, 2, 3-trichloropropane (TCP). Environmental Science and Pollution Research, 2012. 1;19(8):3067-78.</li>
 +
 
 +
 +
    <li>Sasha Khokha . California Finally Begins Regulating Cancer-Causing Chemical Found in Drinking Water. KQED Science Menu, 2017.</li>
 +
  <li>Qian Yong. Research on Environment Behavior of 1,2,3-Trichloropropane in Groundwater of a Contaminated Site with Chlorinated Pollutants. China University of Geosciences(Beijing). 2016</li>
 +
 
 +
  <li>Tratnyek PG, Sarathy V, Fortuna JH. Fate and remediation of 1, 2, 3-trichloropropane. InInternational Conference on Remediation of Chlorinated and Recalcitrant Compounds, 6th, Monterey, CA 2008.</li>
 +
 +
  <li>Sarathy V, Salter AJ, Nurmi JT, O’Brien Johnson G, Johnson RL, Tratnyek PG. Degradation of 1, 2, 3-trichloropropane (TCP): hydrolysis, elimination, and reduction by iron and zinc. Environmental science & technology, 2009. 14;44(2):787-93.</li>
 +
 +
  <li>Sarathy V, Salter AJ, Nurmi JT, O’Brien Johnson G, Johnson RL, Tratnyek PG. Degradation of 1, 2, 3-trichloropropane (TCP): hydrolysis, elimination, and reduction by iron and zinc. Environmental science & technology, 2009. 14;44(2):787-93.</li>
 +
  <li>Kang JW. Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnology letters, 2014. 1;36(6):1129-39.</li>
 +
  <li>Cherian S, Oliveira MM. Transgenic plants in phytoremediation: recent advances and new possibilities. Environmental science & technology, 2005. 15;39(24):9377-90.</li>
 +
  <li>Kang JW. Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnology letters. 2014. 1;36(6):1129-39.</li>
 +
 +
    </ol>
 +
 +
 +
</div>
 +
 +
  </div>
 
</div>
 
</div>
 
</div>
 
</div>
  
 +
<a id="btnTop" class="btnTop" href="javascript:;" title="Back to top" style="display: none;">
 +
<img src="https://static.igem.org/mediawiki/2017/f/f5/T--UESTC-China--back-to-top.png" class="imageTop">
 +
</a>
 +
<img src="https://static.igem.org/mediawiki/2017/b/b7/T--UESTC-China--foot-copyright.jpg" class="foot"/>
 
</body>
 
</body>
  
 
</html>
 
</html>

Latest revision as of 03:45, 2 November 2017

Team:UESTC-China/Introduction - 2017.igem.org

Overview

The progress of the chemical industry and agriculture has brought great convenience to our lives. But a large number of chemical pollutants which were toxic and difficult to degrade have been discharged to the rivers and soils, seriously polluting our environment. Xenobiotic organohalognse played a large part among all the chemical pollutants. After collecting a questionnaire for industrial and agricultural producers and doing a soil research in most areas of China, our team aimed at degrading an organic chloride, 1,2,3-Trichloropropane (1,2,3-TCP), which was less concerned by environmental protection department. In this summer, we decided to use synthetic biology to achieve plant degradation of 1,2,3-Trichloropropane by transferring three enzymes into tobacco which is environmentally friendly and the product, glycerol, is recyclable in tobacco.

The distributions of pollutant 1,2,3-TCP

1,2,3-TCP is an emerging organic pollutant which is usually been used as industrial solvents[1] and raw materials for producing 1,1,2,3-Tetrachloropropene or other chemicals substances[2]. In agriculture, it has been used as one of the ingredients of soil fumigants and it is also a harmful byproduct of other pesticides. The global production of 1,2,3-TCP reached about 50,000 tons annually[3]. Because 1,2,3-TCP is hard to degrade naturally in the environment, it would cause a huge damage to the groundwater and the soil if discharged casually.

One of the most serious pollution of 1,2,3-TCP was discovered in California. It has spread to all over the California since the 1940s when Dow Chemical and Shell started selling two soil fumigants (D-D and Telone) which include 1,2,3-TCP. Although 1,2,3-TCP was banned to use as soil fumigants in the 1990s, there was still a large amount of 1,2,3-TCP remained, to be a threat to the environment and people's lives seriously[4].

Figure 1. Water systems where significant levels of the 1,2,3-TCP have been detected in California

Dr. Yong Qian from University of Geosciences of China has explored the behavior of 1,2,3-TCP in the groundwater. He found 1,2,3-TCP still huge concentration (3890mg / L) underground in an abandoned factory that was only run from 1976 to 1979 in 2016 [5], which showed the great stability of 1,2,3-TCP in the groundwater and soil (Fig. 2).

Figure 2. The distribution of underground 1,2,3-TCP pollution in this factory [5].

Meanwhile, some studies showed that the adhesion coefficient of 1,2,3-TCP is very low[5]. It means that 1,2,3-TCP can be easily diffused into our daily use water. Its potential carcinogenicity and damage to kidney will threaten the health of human beings. In the recent past 10 years, more and more tests showing the existence of 1,2,3-TCP among worldwide drinking water is a sound proof (Fig. 3).

Figure 3. 1,2,3-TCP has been detected in hundreds of surface water and drinking water sources

Based on the above information, 1,2,3-TCP is absolutely a threatening pollutant. However, attentions are far more than enough to be paid on 1,2,3-TCP; and a lot of countries have not put 1,2,3-TCP as the test list of water quality. Since the current situation has been known to us, our team hopes to find a feasible way to stop 1,2,3-TCP by attracting the attentions of the whole society through doing advertisement and iGEM competition before it might cause great damage to the health of human beings.

Ways to solve the pollution of 1,2,3-TCP

Then the question is how to solve the problem of 1,2,3-TCP pollution? Traditional methods to deal with 1,2,3-TCP includes granular activated carbon (GAC)、hydrogen release compound (HRC)、reductive dechlorination by zero valent iron(ZVI) and son on[6]~[8]. However, some of these methods are either too inefficient or too expensive to be used within natural conditions (Fig. 4).

Figure 4. Treatability tests with 1,2,3-TCP-contaminated groundwater/soil

Since 1,2,3-TCP can hardly be dealt with traditional ways, Microbial remediation of 1,2,3-TCP is getting praised. Early studies have shown that 1,2,3-TCP can be converted into CO2、H2O and HCl by biological catalysis through Oxidation of metabolic mechanism with O2. So people are trying to find degradation method by using aerobe. But until now, all the tests to gather and filtrate aerobe to degrade 1,2,3-TCP have failed. However, scientists have found a few categories of bacteria that can degrade 1,2,3-TCP in absolute anaerobic environment. However, due to its strict requirement, the conversion efficiency is not high enough to get popular. In recent years, some studies have started to apply genetic engineering method to inject some enzymes in the seek of 1,2,3-TCP degradation. Some good results have been obtained but with some limitations. Firstly, these bacteria require very strict nutrition requirement and there only exits weak competition among them. Secondly, the diffusion of antibiotic resistance gene can be easily triggered. Finally, this method rely heavily on some specific induction condition[9]. We are not satisfied with these disadvantages and thus we hope to find a 1,2,3-TCP degradation method that is energy-efficient and sustainable. The burgeoning “Phytoremediation” has come into our attention.

Our super tobacco

As one of the new “Green remediation” strategy,phytoremediation shows enormous potential. Compared to microbial remediation, the most important advantage of phytoremediation is that phytoremediation comes with the potential to dispose pollutants by small amount of nutrition input. This is due to its unique feature of photosynthetic autotrophs system. By doing pollutant disposition, at the same time, plants can also help stabilize the soil, purify the water and clear air pollution[10]~[11]. There are four different ways of “Phytoremediation”: phytoextraction、phytostabilization、phytovolatilization and phytodegradation (Fig. 5).

Figure 5. The main models of phytoremediation strategy.

By understanding the physical and chemical properties of 1,2,3-TCP, we know that 1,2,3-TCP normally can not gather in living things and is easily to migrate due to its low adhesion. This makes it hard to deal with 1,2,3-TCP using the strategy of extraction and fixation. Moreover, phytostabilization and phytovolatilization requires frequent disposition and change of plants. This furthers requests to build another complete time and labor consuming system. phytoextraction won’t be taken into our consideration since 1,2,3-TCP can cause severe damage to human health by breathing. Therefore, we choose to use the strategy of phytodegradation to degrade 1,2,3-TCP into glycerol by creating super tobacco.

References

  1. EPA. Technical Fact Sheet – 1,2,3-Trichloropropane (1,2,3-TCP), 2017.
  2. Liu FS. The comprehensive utilization of 1,2,3-Trichloropropane. Speciality Petrochemicals, 1995;2:11-4.
  3. Samin G, Janssen DB. Transformation and biodegradation of 1, 2, 3-trichloropropane (TCP). Environmental Science and Pollution Research, 2012. 1;19(8):3067-78.
  4. Sasha Khokha . California Finally Begins Regulating Cancer-Causing Chemical Found in Drinking Water. KQED Science Menu, 2017.
  5. Qian Yong. Research on Environment Behavior of 1,2,3-Trichloropropane in Groundwater of a Contaminated Site with Chlorinated Pollutants. China University of Geosciences(Beijing). 2016
  6. Tratnyek PG, Sarathy V, Fortuna JH. Fate and remediation of 1, 2, 3-trichloropropane. InInternational Conference on Remediation of Chlorinated and Recalcitrant Compounds, 6th, Monterey, CA 2008.
  7. Sarathy V, Salter AJ, Nurmi JT, O’Brien Johnson G, Johnson RL, Tratnyek PG. Degradation of 1, 2, 3-trichloropropane (TCP): hydrolysis, elimination, and reduction by iron and zinc. Environmental science & technology, 2009. 14;44(2):787-93.
  8. Sarathy V, Salter AJ, Nurmi JT, O’Brien Johnson G, Johnson RL, Tratnyek PG. Degradation of 1, 2, 3-trichloropropane (TCP): hydrolysis, elimination, and reduction by iron and zinc. Environmental science & technology, 2009. 14;44(2):787-93.
  9. Kang JW. Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnology letters, 2014. 1;36(6):1129-39.
  10. Cherian S, Oliveira MM. Transgenic plants in phytoremediation: recent advances and new possibilities. Environmental science & technology, 2005. 15;39(24):9377-90.
  11. Kang JW. Removing environmental organic pollutants with bioremediation and phytoremediation. Biotechnology letters. 2014. 1;36(6):1129-39.