Difference between revisions of "Team:Newcastle"

 
(275 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{Newcastle2}}
+
{{Newcastle6}}
 +
 
 
<html>
 
<html>
<center>
+
<head>
<div style="width:600px">
+
  
<img src="https://static.igem.org/mediawiki/2017/6/6b/T--Newcastle--BB_project_overview.png" style="width:100%">
+
  <style>
 +
html, body, div, span, applet, object, iframe,
 +
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
 +
a, abbr, acronym, address, big, cite, code,
 +
del, dfn, em, img, ins, kbd, q, s, samp,
 +
small, strike, strong, sub, sup, tt, var,
 +
b, u, i, center,
 +
dl, dt, dd, ol, ul, li,
 +
fieldset, form, label, legend,
 +
table, caption, tbody, tfoot, thead, tr, th, td,
 +
article, aside, canvas, details, embed,
 +
figure, figcaption, footer, header, hgroup,
 +
menu, nav, output, ruby, section, summary,
 +
time, mark, audio, video {
 +
margin: 0;
 +
padding: 0;
 +
border: 0;
 +
}
  
</div>
+
body{
</center>
+
  margin-left: 0;
 +
  background-color: #e8e8e8;
 +
}
  
<p>
+
hr{
We aim to produce a toolbox that can be used to construct biosensors. This toolbox will contain devices which can be used to construct biosensors. As the toolbox will contain various devices, as well as chassis, several properties and functionalities for biosensors are possible. To assist with design and development the toolbox will contain in silico tools.<br />
+
  background-color: #444444;
 +
}
 +
#main{
 +
  background-color: #e8e8e8;
 +
  color: #222222;
 +
  padding: 2%;
 +
  font-family: 'Rubik';
 +
}
 +
h1{
 +
  border-style: none;
 +
}
 +
 
 +
.navbar-nav > li{
 +
  padding-left:30px;
 +
  padding-right:30px;
 +
}
 +
 
 +
.dropdown-menu{
 +
  background-color: #e8e8e8;
 +
  font-family: 'Roboto', sans-serif;
 +
  margin-top: -1px;
 +
}
 +
 
 +
.dropdown{
 +
  //background-color: black;
 +
  padding-top: 15px;
 +
  padding-bottom: 15px;
 +
}
 +
 
 +
.dropdown>.dropdown-menu {
 +
  display: none;
 +
}
 +
 
 +
.dropdown:hover>.dropdown-menu {
 +
  display: block;
 +
}
 +
 
 +
.dropdown-item:hover{
 +
  background-color: #a2c0eb;
 +
}
 +
 
 +
.navbar-custom{
 +
  min-height: 80px;
 +
  background-color: #6395de;
 +
  font-family: 'Roboto', sans-serif;
 +
  border-bottom: 1px solid #444444;
 +
}
 +
 
 +
/* change the brand and text color */
 +
.navbar-custom .navbar-brand,
 +
.navbar-custom .navbar-text {
 +
    color: #222222;
 +
}
 +
/* change the link color */
 +
.navbar-custom .navbar-nav .nav-link {
 +
    color: #222222;
 +
}
 +
/* change the color of active or hovered links */
 +
.navbar-custom .nav-item.active .nav-link,
 +
.navbar-custom .nav-item:hover .nav-link {
 +
    color: #444444;
 +
}
 +
  </style>
 +
  <link href="https://fonts.googleapis.com/css?family=Roboto" rel="stylesheet">
 +
  <link href="https://fonts.googleapis.com/css?family=Rubik" rel="stylesheet">
 +
 
 +
</head>
 +
 
 +
<body>
 +
 
 +
  <div class="container-fluid" id="main" style="max-width: 100%; padding-top: 0.5%">
 +
 
 +
      <h1 style="text-align: center; font-size: 4em; font-family: Rubik"> Team Newcastle '17 Presents...</h1>
 +
      <img src="https://static.igem.org/mediawiki/2017/c/c4/T--Newcastle--BB_Logo.png" class="img-fluid rounded mx-auto d-block" style="max-width: 80%" alt="">
 +
      <img src="https://static.igem.org/mediawiki/2017/f/fc/Dec45343.jpeg" class="img-fluid rounded mx-auto d-block" style="max-width: 80%" alt="">
 +
 
 +
      <div class="container-fluid" style="width: 60%">
 +
      <p class="text-justify" style="font-size: 1em; margin-top: 2%; margin-bottom: 2%">Biosensor genetic networks are typically encoded on a single plasmid within a single chassis. However, this configuration means that the biosensor can not be easily modified or re-purposed for new applications.</p>
 +
      <img src="https://static.igem.org/mediawiki/2017/4/42/T--Newcastle--BB_biosensor_plasmid.png" class="img-fluid rounded mx-auto d-block" style="max-width: 40%" alt="">
 +
      <p class="text-justify" style="font-size: 1em; margin-top: 2%; margin-bottom: 2%">To alleviate these problems, we propose that biosensor networks are split into three whole-cell modules; a detector, a processor, and a reporter. </p>
 +
      <img src="https://static.igem.org/mediawiki/2017/7/75/T--Newcastle--BB_biosensor_modules_abstract.png" class="img-fluid rounded mx-auto d-block" style="max-width: 40%" alt="">
 +
      <p class="text-justify" style="font-size: 1em; margin-top: 2%; margin-bottom: 2%">With this in mind, we have created the 'Sensynova Biosensor Development Framework'. This framework separates each module into individual cells which communicate via quorum sensing molecules. This separation creates an off-the-shelf set of well-characterised cellular modules that can be mixed to form new biosensor applications and configurations. This approach also enables biosensor variants to be made and tested without the need for long and tedious genetic cloning steps. Mixing different ratios of the modules allow the response characteristics of the sensor to be tuned systematically and easily. </p>
 
<br />
 
<br />
We also aim to establish a biosensor development technique which allows easy and rapid development and testing of biosensor variants. Each device in our toolbox can be expressed in a separate cell and co-cultured with other cells expressing different devices to produce a functional biosensor. For example, three cell strains expressing an inducible promoter (detector device), a signal amplification device (processing device), and a fluorescent protein (reporter device) can be co-cultured together to make a biosensor. Devices in each cell will communicate through the use of 'connectors', which take the form of quorum sensing molecules.<br />
+
      <img src="https://static.igem.org/mediawiki/2017/c/ca/T--Newcastle--BB_homepage_image.png" class="img-fluid rounded mx-auto d-block" style="max-width: 100%" alt="">
 
<br />
 
<br />
To surpass beyond the lab we want to contribute to the biological community. We aim to highlight the need for our toolbox, by conducting an investigation into the progression of biosensors from research to distribution, as well as the availability of and demand for biosensors. How often biosensors successfully progress from design to distribution, and identification of and issues encountered at each stage of this progression will be investigated, and the results implemented into the toolbox, aiming to help overcome these issues.
+
      <p class="text-justify" style="font-size: 1em; margin-top: 2%; margin-bottom: 2%">We have also included an optional 'adaptor' module. To learn more about our framework, go to our <a href="https://2017.igem.org/Team:Newcastle/Description">project description</a> page!</p>
</p>
+
     
 +
      <h2> Welcome to a New Era of </h2>
 +
      <img src="https://static.igem.org/mediawiki/2017/a/a1/T--Newcastle--BB_Biosensors_logo_style.png" class="img-fluid rounded mx-auto d-block" alt="">
 +
 
 +
      </div>
 +
 
 +
      <hr>
 +
      <h1 style="text-align: center; font-size: 8vw;font-family: Rubik"><span style="color: #e51837">#</span><span style="color: #00477f">freethecanary<span></h1>
 +
 
 +
   
 +
  </div>
 +
</body>
 
</html>
 
</html>
 +
{{Newcastle_footer}}

Latest revision as of 22:40, 16 November 2017

spacefill

Team Newcastle '17 Presents...

Biosensor genetic networks are typically encoded on a single plasmid within a single chassis. However, this configuration means that the biosensor can not be easily modified or re-purposed for new applications.

To alleviate these problems, we propose that biosensor networks are split into three whole-cell modules; a detector, a processor, and a reporter.

With this in mind, we have created the 'Sensynova Biosensor Development Framework'. This framework separates each module into individual cells which communicate via quorum sensing molecules. This separation creates an off-the-shelf set of well-characterised cellular modules that can be mixed to form new biosensor applications and configurations. This approach also enables biosensor variants to be made and tested without the need for long and tedious genetic cloning steps. Mixing different ratios of the modules allow the response characteristics of the sensor to be tuned systematically and easily.



We have also included an optional 'adaptor' module. To learn more about our framework, go to our project description page!

Welcome to a New Era of


#freethecanary