Difference between revisions of "Team:Peking/test"

 
(19 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
+
{{RISE_head}}
 
<html>
 
<html>
<div class="spacer h50"></div>
+
<div class="homeHeaderImage">
         <div class="simple-page centered-page">
+
                <div class="item dynamic_height_div" style="background-image: url('https://static.igem.org/mediawiki/2016/8/8d/T--EPFL--bg-home.jpg')">
             <section class="">
+
                    <div class="caption">
 +
                        <h1>
 +
                            <img src="https://static.igem.org/mediawiki/2017/f/f5/Wojiushishishi.png" alt="INTELLIGENE" style="max-width: 800px;" />
 +
                        </h1>
 +
                       
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </section>
 +
         <div class="simple-page">
 +
             <section class="lightGray features">
 
                 <div class="container">
 
                 <div class="container">
                     <div class="col-md-10 col-md-offset-1 animate-box">
+
                     <div class="row vertical-align">
                        <h2 class="lead">Safety</h2>
+
                        <div class="col-md-5 col-md-offset-1">
                        <div class="spacer h20"></div>
+
                            <div class="spacer h30"></div>
                        <hr class="animate-box"/>
+
                            <p class="index-prompts text-center">
                        <div class="spacer h20"></div>
+
                                What will you do if you could <b>reprogram</b> cells and design there <b>life processes</b>?
 +
                            </p>
 
                         </div>
 
                         </div>
                </div>
+
                        <div class="col-md-5">
            </section>
+
                            <img src="https://static.igem.org/mediawiki/2017/a/ad/Jwldesign.png" alt="" class="index-img"/>
        </div>
+
                        </div>
 +
                    </div>
 +
                    <div class="spacer0"></div>
 +
                    <div class="row vertical-align">
  
 +
                        <div class="col-md-5 col-md-push-6">
 +
                            <div class="spacer h30"></div>
 +
                            <p class="index-prompts text-center">
 +
                                A <b>periodic drug delivery</b> to precise drug release in sequential order, appropriate time?
 +
                            </p>
 +
                        </div>
 +
                        <div class="reponse col-md-5 col-md-pull-4">
 +
                            <img src="https://static.igem.org/mediawiki/2017/0/04/Jwlmedicine.png" alt="" class="index-img"/>
 +
                        </div>
 +
                    </div>
  
        <div class="simple-page">
+
                     <div class="spacer0"></div>
            <section class="">
+
                    <div class="row vertical-align">
                <div class="container">
+
                     <div class="col-md-10 col-md-offset-1 animate-box">
+
                        <h3>GENERAL</h3>
+
                        <div class="spacer h20"></div>
+
                        <hr class="animate-box"/>
+
                        <div class="spacer h20"></div>
+
                          <p class="sub-lead">
+
                            Working in the lab means that  we have  safety guidelines! First of all, lab coat and gloves are mandatory along with safety glasses where needed. We start every experiment cleaning  our workbench with ethanol and end that same experiment doing exactly the same, preventing growth of contaminants. Furthermore, we separated the benches used for E. coli and Yeast to avoid contamination. When working near the flames we avoided using gloves. All bacterial and yeast cultures were neutralized with bleach before disposal and put in the biowaste. Posttreatment of the waste was done by the home institute facility and according to the legislation in our country.
+
                          </p>
+
  
                         <div class="spacer h20"></div>
+
                         <div class="col-md-5 col-md-offset-1">
 +
                            <div class="spacer h30"></div>
 +
                            <p class="index-prompts text-center">
 +
                                An<b> automatic cell factory</b> where all biosynthetic procedures in one fermentation tank?
 +
                            </p>
 +
                        </div>
 +
                        <div class="col-md-5">
 +
                            <img src="https://static.igem.org/mediawiki/2017/d/da/Jwlcell.png" alt="" class="index-img"/>
 +
                        </div>
 
                     </div>
 
                     </div>
                </div>
 
            </section>
 
        </div>
 
  
        <div class="simple-page">
+
                     <div class="spacer0"></div>
            <section class="">
+
                    <div class="row vertical-align">
                <div class="container">
+
                     <div class="col-md-10 col-md-offset-1 animate-box">
+
                        <h3>SPECIAL MEASURES</h3>
+
                        <div class="spacer h20"></div>
+
                        <hr class="animate-box"/>
+
                        <div class="spacer h20"></div>
+
                          <p class="sub-lead">
+
                            We are working with dCas9, a catalytically dead version of CRISPR-Cas9, which unlike its active form isn’t able to cut DNA sequences but it only binds to them depending on the guide RNA (gRNA). Therefore the danger from off-targets is already much lower. That did not stop us from checking for any binding sequences for gRNAs in the yeast and human genome (even though we do not intend to use our gates in humans) to add another layer of security. The risk in this could be unwanted inhibition/activation of some of the genes in our own genome! Luckily, we were able to design and obtain gRNAs with no such human-binding capabilities!
+
                          </p>
+
  
                         <div class="spacer h20"></div>
+
                         <div class="col-md-5 col-md-push-6">
 +
                            <div class="spacer h30"></div>
 +
                            <p class="index-prompts text-center">
 +
                                Cells that can <b>survive</b> in harsh environements by doing a series of functions their surroundings going where <b>no cells have gone before</b>?
 +
                            </p>
 +
                        </div>
 +
                        <div class="reponse col-md-5 col-md-pull-4">
 +
                            <img src="https://static.igem.org/mediawiki/2017/1/1e/Jwlrocket.png" alt="" class="index-img"/>
 +
                        </div>
 
                     </div>
 
                     </div>
 +
                    <div class="spacer0"></div>
 +
 +
                    <div class="spacer0"></div>
 +
 +
 
                 </div>
 
                 </div>
 
             </section>
 
             </section>
 
         </div>
 
         </div>
 +
        <!-- END #features-2 -->
 +
 +
        <!-- Welcome
 +
            ============================================= -->
 +
        <section id="welcome">
 +
            <div class="container">
 +
                <h2><span>Why </span>sequential logic?</h2>
 +
                <hr class="sep">
 +
                <div class="col-md-10 col-md-offset-1">
 +
                    <p class="sub-lead">Cells are responsive to a myriad signals under most conditions and adjust their own internal mechanisms order to survive. This adjustment depends not only on processing a combination of current environmental signal inputs , but also on determining the cell’s current state, which is a result of a series of past inputs.  In digital circuit theory, this operating mode is known as <b>sequential logic</b>. Nowadays, a wide variety of tasks can be performed by synthetically engineered genetic circuits, mostly constructed using combinational logic. Contrast to sequential logic, it's output is a function of the present input only. It is difficult to perform functions in a specific order, which has limited the widespread implementation of such systems. The ability of sequential logic circuits to store modest amounts of information within living systems and to act upon them would enable new approaches to the study and control of biological processes . A cell can be designed to do work that is more complex if it has more states. In other words, we can reach a new dimensionality in designing synthetic life – <b>time</b>.
 +
 +
                    </p>
 +
                </div>
 +
            </div>
 +
            <div class="container">
 +
                <h2><span>What </span>we did</h2>
 +
                <hr class="sep">
 +
                <div class="col-md-10 col-md-offset-1">
 +
 +
                    <p class="sub-lead">This year, the Peking iGEM team is attempting to develop a frame of biological sequential circuits that are programmable. The envisioned circuit is capable of both storing states in DNA and automatically running a series of instructions in a specific order. More specifically, the sequential logic that consists of a <b>clock</b> , <b>flip flop</b>  and <b>control unit</b> in bacteria. The clock is an oscillator with a repeated signal cycle that is utilized like a metronome to trigger actions of sequential logic circuits. <b>Flip-flop</b> is a memory device that can remember a state. Paired with a clock signal, it can realize state transition. The <b>control unit</b> is a functional part which can convert a signal from flip-flop into complex functions. With such a design, historical events are recorded and influence current cell behavior.</p>
 +
<p class="sub-lead">This work tries to point the way toward building large computational sys-tems from modular biological parts—basic sequential computing devices in living cells—and ultimately, programming complex biological functions. Computers have thus become "alive". A unicellular organism itself cannot pack much computational power, but considered as a modular building block, its potential is impressive. 
 +
 +
                    </p>
 +
                </div>
 +
                <div class="spacer h50"></div>
 +
            </div>
 +
        </section>
 
</html>
 
</html>
 
{{RISE_foot}}
 
{{RISE_foot}}

Latest revision as of 01:13, 17 November 2017

iGEM EPFL 2016

INTELLIGENE

What will you do if you could reprogram cells and design there life processes?

A periodic drug delivery to precise drug release in sequential order, appropriate time?

An automatic cell factory where all biosynthetic procedures in one fermentation tank?

Cells that can survive in harsh environements by doing a series of functions their surroundings going where no cells have gone before?

Why sequential logic?


Cells are responsive to a myriad signals under most conditions and adjust their own internal mechanisms order to survive. This adjustment depends not only on processing a combination of current environmental signal inputs , but also on determining the cell’s current state, which is a result of a series of past inputs. In digital circuit theory, this operating mode is known as sequential logic. Nowadays, a wide variety of tasks can be performed by synthetically engineered genetic circuits, mostly constructed using combinational logic. Contrast to sequential logic, it's output is a function of the present input only. It is difficult to perform functions in a specific order, which has limited the widespread implementation of such systems. The ability of sequential logic circuits to store modest amounts of information within living systems and to act upon them would enable new approaches to the study and control of biological processes . A cell can be designed to do work that is more complex if it has more states. In other words, we can reach a new dimensionality in designing synthetic life – time.

What we did


This year, the Peking iGEM team is attempting to develop a frame of biological sequential circuits that are programmable. The envisioned circuit is capable of both storing states in DNA and automatically running a series of instructions in a specific order. More specifically, the sequential logic that consists of a clock , flip flop and control unit in bacteria. The clock is an oscillator with a repeated signal cycle that is utilized like a metronome to trigger actions of sequential logic circuits. Flip-flop is a memory device that can remember a state. Paired with a clock signal, it can realize state transition. The control unit is a functional part which can convert a signal from flip-flop into complex functions. With such a design, historical events are recorded and influence current cell behavior.

This work tries to point the way toward building large computational sys-tems from modular biological parts—basic sequential computing devices in living cells—and ultimately, programming complex biological functions. Computers have thus become "alive". A unicellular organism itself cannot pack much computational power, but considered as a modular building block, its potential is impressive.