Difference between revisions of "Team:ColumbiaNYC"

Line 4: Line 4:
  
 
<head>
 
<head>
 +
    <style>
 
         .headline h1 {
 
         .headline h1 {
 
             font-size: 130px;
 
             font-size: 130px;
 
             background: #fff;
 
             background: #fff;
             background: rgba(255,255,255,0.9);
+
             background: rgba(255, 255, 255, 0.9);
 
         }
 
         }
       
+
 
 
         .headline h2 {
 
         .headline h2 {
 
             font-size: 77px;
 
             font-size: 77px;
 
             background: #fff;
 
             background: #fff;
             background: rgba(255,255,255,0.9);
+
             background: rgba(255, 255, 255, 0.9);
 
         }
 
         }
       
+
 
 
         .headline h3 {
 
         .headline h3 {
 
             font-size: 50px;
 
             font-size: 50px;
 
             background: #fff;
 
             background: #fff;
             background: rgba(255,255,255,0.9);
+
             background: rgba(255, 255, 255, 0.9);
 
         }
 
         }
 +
    </style>
 +
 
</head>
 
</head>
  
 
<body id="page-top">
 
<body id="page-top">
  
  <!-- Full Width Image Header -->
+
    <!-- Full Width Image Header -->
  <header class="header-image">
+
    <header class="header-image">
      <div class="headline">
+
        <div class="headline">
          <div class="container">
+
            <div class="container">
              <h1>SilenshR</h1>
+
                <h1>SilenshR</h1>
              <h3>a Bacteria-Mediated Oncogene Silencing as Living Cancer Therapeutic</h3>
+
                <h3>a Bacteria-Mediated Oncogene Silencing as Living Cancer Therapeutic</h3>
          </div>
+
            </div>
      </div>
+
        </div>
  </header>
+
    </header>
  
  <!-- Page Content -->
+
    <!-- Page Content -->
  <div class="container">
+
    <div class="container">
  
      <hr class="featurette-divider">
+
        <hr class="featurette-divider">
  
<body>
+
        <body>
  
  
<div class="slideshow-container">
+
            <div class="slideshow-container">
  
</div>
+
            </div>
<br>
+
            <br>
  
<div style="text-align:center">
+
            <div style="text-align:center">
  <span class="dot"></span>  
+
                <span class="dot"></span>
  <span class="dot"></span>  
+
                <span class="dot"></span>
  <span class="dot"></span>  
+
                <span class="dot"></span>
</div>
+
            </div>
  
</body>
+
        </body>
  
  
  
      <!-- First Featurette -->
+
        <!-- First Featurette -->
      <div class="featurette" id="about">
+
        <div class="featurette" id="about">
          <img class="featurette-image img-circle img-responsive pull-right" src="http://placehold.it/500x500">
+
            <img class="featurette-image img-circle img-responsive pull-right" src="http://placehold.it/500x500">
          <h2 class="featurette-heading">The Advantages to a  
+
            <h2 class="featurette-heading">The Advantages to a
              <span class="text-muted">Synthetic Biology Approach</span>
+
                <span class="text-muted">Synthetic Biology Approach</span>
          </h2>
+
            </h2>
          <p class="lead">A cornerstone in synthetic biology is the connection of distinct biological functions to create useful system level behavior. We can take advantage of how bacteria naturally localize in tumors while failing to survive in healthy tissue in the body to use bacteria as a cancer-specific delivery mechanism. Also, bacteria can mass produce products, invade cells, and release the products directly into the cells. This allows easily-degraded compounds to be effective delivered into cancer cells. It also prevents these compounds from affecting healthy cells. The combination of these mechanisms creates a powerful, cancer-specific circuit for gene therapy.</p>
+
            <p class="lead">A cornerstone in synthetic biology is the connection of distinct biological functions to create useful system
      </div>
+
                level behavior. We can take advantage of how bacteria naturally localize in tumors while failing to survive
 +
                in healthy tissue in the body to use bacteria as a cancer-specific delivery mechanism. Also, bacteria can
 +
                mass produce products, invade cells, and release the products directly into the cells. This allows easily-degraded
 +
                compounds to be effective delivered into cancer cells. It also prevents these compounds from affecting healthy
 +
                cells. The combination of these mechanisms creates a powerful, cancer-specific circuit for gene therapy.</p>
 +
        </div>
  
      <hr class="featurette-divider">
+
        <hr class="featurette-divider">
  
      <!-- Second Featurette -->
+
        <!-- Second Featurette -->
      <div class="featurette" id="services">
+
        <div class="featurette" id="services">
          <img class="featurette-image img-circle img-responsive pull-left" src="http://placehold.it/500x500">
+
            <img class="featurette-image img-circle img-responsive pull-left" src="http://placehold.it/500x500">
          <h2 class="featurette-heading">Expanding the Possibilities of  
+
            <h2 class="featurette-heading">Expanding the Possibilities of
              <span class="text-muted">Gene Therapy</span>
+
                <span class="text-muted">Gene Therapy</span>
          </h2>
+
            </h2>
          <p class="lead">Anticipating the applications of synthetic biology to healthcare, Columbia iGEM 2017 is devising a therapeutic approach to modulate mammalian gene expression at the post-transcriptional level. Recombinant E. coli with the capacity to invade mammalian cells will deliver an shRNA payload against an aberrantly expressed gene, for example an oncogene in cancer or proinflammatory cytokine in inflammation, to the host cytoplasm. This shRNA payload will then inhibit protein function, which can combat mutations that confer resistance to traditional therapies, as with the tyrosine kinase inhibitors gefitinib and imatinib. </p>
+
            <p class="lead">Anticipating the applications of synthetic biology to healthcare, Columbia iGEM 2017 is devising a therapeutic
      </div>
+
                approach to modulate mammalian gene expression at the post-transcriptional level. Recombinant E. coli with
 +
                the capacity to invade mammalian cells will deliver an shRNA payload against an aberrantly expressed gene,
 +
                for example an oncogene in cancer or proinflammatory cytokine in inflammation, to the host cytoplasm. This
 +
                shRNA payload will then inhibit protein function, which can combat mutations that confer resistance to traditional
 +
                therapies, as with the tyrosine kinase inhibitors gefitinib and imatinib. </p>
 +
        </div>
  
      <hr class="featurette-divider">
+
        <hr class="featurette-divider">
  
      <!-- Third Featurette -->
+
        <!-- Third Featurette -->
      <div class="featurette" id="contact">
+
        <div class="featurette" id="contact">
          <img class="featurette-image img-circle img-responsive pull-right" src="http://placehold.it/500x500">
+
            <img class="featurette-image img-circle img-responsive pull-right" src="http://placehold.it/500x500">
          <h2 class="featurette-heading">The Future  
+
            <h2 class="featurette-heading">The Future
              <span class="text-muted">Outlook</span>
+
                <span class="text-muted">Outlook</span>
          </h2>
+
            </h2>
          <p class="lead">Our mechanism to modulate mammalian gene expression can have a variety of applications, extending throughout as well beyond healthcare. The engineered bacteria would have a significant application to human health particularly in conditions characterized by aberrant gene expression, such as with oncogenes in cancer, cytokines in inflammation, and many others. For cancer applications, the engineered bacteria can be taken as an oral probiotic, which will then selectively localize in tumor cells to prove gene therapy.</p>
+
            <p class="lead">Our mechanism to modulate mammalian gene expression can have a variety of applications, extending throughout
      </div>
+
                as well beyond healthcare. The engineered bacteria would have a significant application to human health particularly
 +
                in conditions characterized by aberrant gene expression, such as with oncogenes in cancer, cytokines in inflammation,
 +
                and many others. For cancer applications, the engineered bacteria can be taken as an oral probiotic, which
 +
                will then selectively localize in tumor cells to prove gene therapy.</p>
 +
        </div>
  
      <hr class="featurette-divider">
+
        <hr class="featurette-divider">
  
  </div>
+
    </div>
  
 
</body>
 
</body>

Revision as of 00:33, 22 October 2017

SilenshR

a Bacteria-Mediated Oncogene Silencing as Living Cancer Therapeutic



The Advantages to a Synthetic Biology Approach

A cornerstone in synthetic biology is the connection of distinct biological functions to create useful system level behavior. We can take advantage of how bacteria naturally localize in tumors while failing to survive in healthy tissue in the body to use bacteria as a cancer-specific delivery mechanism. Also, bacteria can mass produce products, invade cells, and release the products directly into the cells. This allows easily-degraded compounds to be effective delivered into cancer cells. It also prevents these compounds from affecting healthy cells. The combination of these mechanisms creates a powerful, cancer-specific circuit for gene therapy.


Expanding the Possibilities of Gene Therapy

Anticipating the applications of synthetic biology to healthcare, Columbia iGEM 2017 is devising a therapeutic approach to modulate mammalian gene expression at the post-transcriptional level. Recombinant E. coli with the capacity to invade mammalian cells will deliver an shRNA payload against an aberrantly expressed gene, for example an oncogene in cancer or proinflammatory cytokine in inflammation, to the host cytoplasm. This shRNA payload will then inhibit protein function, which can combat mutations that confer resistance to traditional therapies, as with the tyrosine kinase inhibitors gefitinib and imatinib.


The Future Outlook

Our mechanism to modulate mammalian gene expression can have a variety of applications, extending throughout as well beyond healthcare. The engineered bacteria would have a significant application to human health particularly in conditions characterized by aberrant gene expression, such as with oncogenes in cancer, cytokines in inflammation, and many others. For cancer applications, the engineered bacteria can be taken as an oral probiotic, which will then selectively localize in tumor cells to prove gene therapy.