Difference between revisions of "Team:Lambert GA/Hardware"

Line 10: Line 10:
  
 
#mainContainer{
 
#mainContainer{
    background-color: white;
+
background-color: #7A7A79;
 
     width: 100%;
 
     width: 100%;
 
}
 
}
Line 17: Line 17:
 
margin: auto;
 
margin: auto;
 
     padding: 0px;
 
     padding: 0px;
    background-color: white;
 
 
}
 
}
  
body { background-color: white; margin: auto; padding: 0px; width: 100%;}
+
body { margin: 0px; padding: 0px; width: 100%;}
  
 
a.drplink {
 
a.drplink {
Line 31: Line 30:
  
 
div {
 
div {
color: gray;
+
color: white;
 
}
 
}
  
#content {
+
 
margin: 0px auto;
+
#content {  
background-color: white;
+
margin: 0px;
 +
margin-top: -15px;
 +
background-color: #7A7A79;
 
width: 100%;
 
width: 100%;
 
padding: 0px;
 
padding: 0px;
 +
font-family: 'Roboto', sans-serif;
 
}
 
}
  
Line 72: Line 74:
 
position: center;
 
position: center;
 
border: none;
 
border: none;
color: #D49AE6;
+
color: #D49AE6;  
 
text-align: center;
 
text-align: center;
 
text-decoration: none;
 
text-decoration: none;
Line 88: Line 90:
 
padding-bottom: 7px;
 
padding-bottom: 7px;
 
font-size: 45px;
 
font-size: 45px;
color: #FFB59E ; }
+
color: #FFB59E; }
  
  
Line 107: Line 109:
  
 
h2{
 
h2{
color: #A6FF79 ;
+
color: #FFB59E;
 
text-align:center;
 
text-align:center;
 
hspace="20"
 
hspace="20"
Line 116: Line 118:
 
position: fixed;
 
position: fixed;
 
text-decoration: none;
 
text-decoration: none;
color: #b8975e;
+
color: #42413C;
 
width: 100%;
 
width: 100%;
 
height: 50px;
 
height: 50px;
 
line-height: 50px;
 
line-height: 50px;
background-color: white;
+
background-color: #555554;
margin: auto;
+
margin-top: 0px;
 
text-align:center;
 
text-align:center;
 
opacity: 0.9;
 
opacity: 0.9;
Line 140: Line 142:
 
     padding: 0px;
 
     padding: 0px;
 
display: block;
 
display: block;
margin: 0px auto;
+
margin: 0px auto;  
 
}
 
}
  
Line 177: Line 179:
 
.transparency:hover {
 
.transparency:hover {
 
     opacity: 1;
 
     opacity: 1;
    filter: alpha(opacity=100);
+
filter: alpha(opacity=100);
 
     width = 100px;
 
     width = 100px;
 
-webkit-backface-visibility: hidden;
 
-webkit-backface-visibility: hidden;
Line 220: Line 222:
 
   height: 100%;
 
   height: 100%;
 
   width: 100%;
 
   width: 100%;
  background-color: white;
 
 
   color: #D49AE6;
 
   color: #D49AE6;
 
   padding: 14px;
 
   padding: 14px;
Line 229: Line 230:
 
   transition: background-color 0.5s ease-in-out, color 0.5s ease-in-out;
 
   transition: background-color 0.5s ease-in-out, color 0.5s ease-in-out;
 
}
 
}
 +
  
 
/* The container <div> - needed to position the dropdown content */
 
/* The container <div> - needed to position the dropdown content */
Line 247: Line 249:
 
     transition: opacity 0.5s ease-in-out;
 
     transition: opacity 0.5s ease-in-out;
 
}
 
}
 +
  
 
/* Links inside the dropdown */
 
/* Links inside the dropdown */
Line 260: Line 263:
  
 
/* Change color of dropdown links on hover */
 
/* Change color of dropdown links on hover */
.dropdown-content a:hover {background-color: #F48FB1;
+
.dropdown-content a:hover {background-color: #D49AE6;
 
color: #4A555C;}
 
color: #4A555C;}
  
Line 275: Line 278:
 
/* Change the background color of the dropdown button when the dropdown content is shown*/
 
/* Change the background color of the dropdown button when the dropdown content is shown*/
 
.dropbtn:hover {
 
.dropbtn:hover {
     background-color: #F48FB1;
+
     background-color: #D49AE6;
 
     color:  #4A555C;
 
     color:  #4A555C;
 
}
 
}
Line 292: Line 295:
 
}
 
}
 
</style>
 
</style>
 
  
  

Revision as of 11:26, 25 October 2017


Description


The Lambert iGEM team is attempting to address two themes that embody synthetic biology and its diverse range of applications: precision and universality. Last year, the 2016 Lambert iGEM team attempted to address the issue of overexpression of proteins by devising a “switch”, a genetically engineered construct that degraded GFP (green fluorescent protein) using a protease mechanism ClpXP upon induction of IPTG. This year’s team is continuing to build upon this idea of characterizing ClpXP by further developing our genetic construct via the use of various chromoproteins and promoters. The data will be quantified using the ChromQ, a camera device that standardizes the light source to accurately measure the amount of chromoprotein present in a pellet of cells. Our ChromQ aims to allow especially under-funded labs to have access to a device that quantifies data without spending thousands of dollars; in addition, a functional app and mathematical model are being created to be able to compare expressions of pigments before, during, and after induction of IPTG. Ultimately, the 2017 Lambert iGEM team is striving to further characterize a precise, non-lysosomal induced protein degradation (ClpXP) and to market an affordable device (ChromQ) that can be universally used to quantify data.




















Improving Previous Parts








References

And, S. A. (2009, February 13). Sarita Ahlawat. ClpXP Degrades SsrA-tagged proteins in S.pneumoniae.Retrieved Summer, 2017, from http://jb.asm.org/content/191/8/2894.full

Andersen , J.B. , Sternberg , C. , Poulsen , L.K. , Bjorn , S.P. , Givskov , M. , and Molin , S. ( 1998 ) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria . Appl Environ Microbiol 64 : 2240 – 2246 .

Baker, T. A., & Sauer, R. T. (2011, June 27). ClpXP, an ATP-powered unfolding and protein-degradation machine. Retrieved Summer, 2017, from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3209554/

Bar-Nun, S., & Glickman, M. H. (2012). Proteasomal AAA-ATPases: Structure and function. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1823(1), 67–82. doi:10.1016/j.bbamcr.2011.07.009. Retrieved Summer, 2017 from http://www.sciencedirect.com/science/article/pii/S0167488911001984

Bohn , C. , Binet , E. , and Bouloc , P. ( 2002 ) Screening for stabilization of proteins with a trans-translation signature in Escherichia coli selects for inactivation of the ClpXP protease . Mol Genet Genomics 266 : 827 –831 .

Burton , R.E. , Siddiqui , S.M. , Kim , Y.I. , Baker , T.A. , and Sauer , R.T. ( 2001 ) Effects of protein stability and structure on substrate processing by the ClpXP unfolding and degradation machine . EMBO J 20 : 3092 –3100 .

Ciechanover, A. (2005). Cell death and differentiation - abstract of article: Intracellular protein degradation: From a vague idea thru the lysosome and the ubiquitin-proteasome system and onto human diseases and drug targeting[ast]. Cell Death & Differentiation, 12(9), 1178–1190. doi:10.1038/sj.cdd.4401692

Cooper, G. M. (2000). Protein degradation. Retrieved Summer, 2017 from http://www.ncbi.nlm.nih.gov/books/NBK9957/

Farrell, C., Grossman, A., & Sauer, R. (2005). Cytoplasmic degradation of ssrA-tagged proteins.Molecular microbiology., 57(6), 1750–61. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16135238

Flynn , J.M. , Levchenko , I. , Seidel , M. , Wickner , S.H. , Sauer , R.T. , and Baker , T.A. ( 2001 ) Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis . Proc Natl Acad Sci USA 11 : 10584 – 10589.

Georgia Institute of Technology. (2015, September 1). “Bacterial litmus Test” provides inexpensive measurement of Micronutrients. Retrieved from GT News Center, http://www.news.gatech.edu/2015/09/01/bacterial-litmus-test-provides-inexpensive-measurement-micronutrients

Goldberg, A.L., A.S. Menon, S. Goff and D.T. Chin. 1987. The mechanism and regulation of the ATP-dependent protease La from Escherichia coli. Biochem. Soc. Trans. 15: 809-811. Retrieved October 1, 2017 from http://www.fao.org/wairdocs/ilri/x5550e/x5550e0d.htm

Hwang BJ, Woo KM, Goldberg AL, Chung CH. Protease Ti, a new ATP-dependent protease in Escherichia coli,contains protein-activated ATPase and proteolytic functions in distinct subunits. J Biol Chem. 1988;263:8727–8734.

Katayama-Fujimura Y, Gottesman S, Maurizi MR. A multiple-component, ATP-dependent protease from Escherichia coli. J Biol Chem. 1987;262:4477–4485.

Landry, B. P., & Stöckel, J. (2013). Use of degradation tags to control protein levels in the Cyanobacterium Synechocystis sp. Strain PCC 6803. Applied and Environmental Microbiology,79(8), 2833–2835. doi:10.1128/AEM.03741-12

Lee C, Schwartz MP, Prakash S, Iwakura M, Matouschek A. ATP-Dependent Proteases Degrade Their Substrates by Processively Unraveling Them from the Degradation Signal.

McNerney, M. P., Watstein, D. M., & Styczynski, M. P. (2015). Precision metabolic engineering: The design of responsive, selective, and controllable metabolic systems. Metabolic Engineering, 31, 123–131. doi:10.1016/j.ymben.2015.06.011

Minikel, E. V. (2013, June 11). Basics of protein degradation. Retrieved Summer, 2017, from http://www.cureffi.org/2013/07/11/basics-of-protein-degradation/

Mogk A, Schmidt R, Bukau B. The N-end rule pathway for regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol. 2007;17:165–172.

Purcell, O., Grierson, C. S., Bernardo, M. di, & Savery, N. J. (2012). Temperature dependence of ssrA-tag mediated protein degradation. Journal of Biological Engineering, 6(1), . doi:10.1186/1754-1611-6-10

Schrader, E. K., Harstad, K. G., & Matouschek, A. (n.d.). Targeting proteins for degradation. , 5(11), . Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228941/

Snider, J., Thibault, G., & Houry, W. A. (2008). The AAA+ superfamily of functionally diverse proteins. , 9(4), . Retrieved Summer, 2017 from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2643927/

Tanaka K. The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci.2009;85:12–36.

Tao, L., & Biswas, I. (2015). Degradation of SsrA-tagged proteins in streptococci. , 161(Pt 4),. Retrieved September 9, 2017 from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4857447/

Tu, D., Lee, J., Ozdere, T., Lee, T. J., & You, L. (2007, January ). Engineering Genetic Circuits: Foundations and Applications. Retrieved from http://people.duke.edu/~you/publications/Tu_etal_SyntheticBiology.pdf

Watstein, D. M., McNerney, M. P., & Styczynski, M. P. (2015). Precise metabolic engineering of carotenoid biosynthesis in Escherichia coli towards a low-cost biosensor. Metabolic Engineering,31, 171–180. doi:10.1016/j.ymben.2015.06.007