Difference between revisions of "Team:Newcastle/Home Jack"

Line 107: Line 107:
 
       <img src="https://static.igem.org/mediawiki/2017/c/c4/T--Newcastle--BB_Logo.png" class="img-fluid rounded mx-auto d-block" style="max-width: 80%" alt="">
 
       <img src="https://static.igem.org/mediawiki/2017/c/c4/T--Newcastle--BB_Logo.png" class="img-fluid rounded mx-auto d-block" style="max-width: 80%" alt="">
 
        
 
        
       <div class="container-fluid text-justify" style="width: 60%">
+
       <div class="container-fluid" style="width: 60%">
       <p class="text-center" style="font-size: 1em; margin-top: 2%; margin-bottom: 2%">Biosensor genetic networks are typically encoded on a single plasmid within a single chassis. However, this configuration can create stress on the host organism as they have to express the entire network, and the biosensor can not be easily modified or re-purposed for new applications.</p>
+
       <p class="text-center text-justify" style="font-size: 1em; margin-top: 2%; margin-bottom: 2%">Biosensor genetic networks are typically encoded on a single plasmid within a single chassis. However, this configuration can create stress on the host organism as they have to express the entire network, and the biosensor can not be easily modified or re-purposed for new applications.</p>
 
       <img src="https://static.igem.org/mediawiki/2017/4/42/T--Newcastle--BB_biosensor_plasmid.png" class="img-fluid rounded mx-auto d-block" style="max-width: 40%" alt="">
 
       <img src="https://static.igem.org/mediawiki/2017/4/42/T--Newcastle--BB_biosensor_plasmid.png" class="img-fluid rounded mx-auto d-block" style="max-width: 40%" alt="">
       <p class="text-center" style="font-size: 1em; margin-top: 2%; margin-bottom: 2%">To alleviate these problems, we propose that biosensor networks are split into three whole-cell modules; a detector, a processor, and a reporter.</p>
+
       <p class="text-center text-justify" style="font-size: 1em; margin-top: 2%; margin-bottom: 2%">To alleviate these problems, we propose that biosensor networks are split into three whole-cell modules; a detector, a processor, and a reporter.</p>
 
       <img src="https://static.igem.org/mediawiki/2017/7/75/T--Newcastle--BB_biosensor_modules_abstract.png" class="img-fluid rounded mx-auto d-block" style="max-width: 40%" alt="">
 
       <img src="https://static.igem.org/mediawiki/2017/7/75/T--Newcastle--BB_biosensor_modules_abstract.png" class="img-fluid rounded mx-auto d-block" style="max-width: 40%" alt="">
       <p class="text-center" style="font-size: 1em; margin-top: 2%; margin-bottom: 2%">With this in mind, we have created the 'Sensynova Biosensor Development Framework'. This framework separates each module into individual cells which communicate via quorum sensing molecules. This separation creates an off-the-shelf set of cellular modules that can be mixed to form new biosensor applications and configurations. This approach also enables biosensor variants to be made and tested without the need for long and tedious genetic cloning steps.</p>
+
       <p class="text-center text-justify" style="font-size: 1em; margin-top: 2%; margin-bottom: 2%">With this in mind, we have created the 'Sensynova Biosensor Development Framework'. This framework separates each module into individual cells which communicate via quorum sensing molecules. This separation creates an off-the-shelf set of cellular modules that can be mixed to form new biosensor applications and configurations. This approach also enables biosensor variants to be made and tested without the need for long and tedious genetic cloning steps.</p>
 
       <img src="https://static.igem.org/mediawiki/2017/0/03/T--Newcastle--BB_framework_framework.png  " class="img-fluid rounded mx-auto d-block" style="max-width: 40%" alt="">
 
       <img src="https://static.igem.org/mediawiki/2017/0/03/T--Newcastle--BB_framework_framework.png  " class="img-fluid rounded mx-auto d-block" style="max-width: 40%" alt="">
       <p class="text-center" style="font-size: 1em; margin-top: 2%; margin-bottom: 2%">We have also included an optional 'adapter' module. To learn more about our framework, go to our project description page!</p>
+
       <p class="text-center text-justify" style="font-size: 1em; margin-top: 2%; margin-bottom: 2%">We have also included an optional 'adapter' module. To learn more about our framework, go to our project description page!</p>
 
     </div>
 
     </div>
 
      
 
      

Revision as of 15:15, 27 October 2017

spacefill

Team Newcastle '17 Presents...

Biosensor genetic networks are typically encoded on a single plasmid within a single chassis. However, this configuration can create stress on the host organism as they have to express the entire network, and the biosensor can not be easily modified or re-purposed for new applications.

To alleviate these problems, we propose that biosensor networks are split into three whole-cell modules; a detector, a processor, and a reporter.

With this in mind, we have created the 'Sensynova Biosensor Development Framework'. This framework separates each module into individual cells which communicate via quorum sensing molecules. This separation creates an off-the-shelf set of cellular modules that can be mixed to form new biosensor applications and configurations. This approach also enables biosensor variants to be made and tested without the need for long and tedious genetic cloning steps.

We have also included an optional 'adapter' module. To learn more about our framework, go to our project description page!

Welcome to a New Era of


#freethecanary