Difference between revisions of "Team:TMMU-China/Model"

Line 296: Line 296:
  
  
 +
<div class="banner-bottom">
 +
<div class="container">
 +
<div class="mid_agile_bannner_top_info">
 +
<h1><span>Model 3. the gene expression model of AimR-AimP systems</span></h1>
 +
<div class="heading-underline">
 +
<div class="h-u1"></div>
 +
<div class="h-u2"></div>
 +
<div class="h-u3"></div>
 +
<div class="clearfix"></div>
 +
</div>
 +
 +
        <div class="col-md-12">
 +
 +
          <h3 style="color: #00a98f;">Introduction:</h3>
 +
          <p>This models, which can predict the gene expression of AimR-AimP systems, is practical for many research. In this model, the genetic circuit describes the biochemical reactions taking place inside the cell (Figure5). The intracellular model describes the fluctuations in concentrations of each substance by modelling each chemical reaction.</p>
 +
      <img width="60%" src="https://static.igem.org/mediawiki/2017/0/0d/T--TMMU-China--model11.png">
 +
      <p style="text-align: center;font-family:'Open Sans', sans-serif;font-size: 13px;">Figure 5.the gene expression model of AimR-AimP system[7]</p>
 +
 +
      <p>This QS system of AimR-AimP remains to be further studied for potential application. The QS response is quite tightly regulated as expression occurs only once the local bacterial density passes a fixed threshold value, similar unlike a switch. This system is encoded</p>
 +
      <p>by three phage genes: aimP, which produces the peptide; aimR, the intracellular peptide receptor; and aimX, a negative regulator of lysogeny. In the sender system, aimP produces the peptide and the concentration of peptide changes along with time. While in the receiver system, the peptide binds with aimX which inhibites the target gene expression. The mechanism can briefly described in the following:</p>
 +
      <img width="40%" src="https://static.igem.org/mediawiki/2017/8/87/T--TMMU-China--model12.png">
 +
 +
 +
 +
          </br></br></br>
 +
          <h3 style="color: #00a98f;">Modeling:</h3>
 +
     
 +
      <p>In this model, we want to quantify the gene expression of the complete AimR-AimP system including the sender and receiver. Let us now consider the complete AimR-AimP system as illustrated in the figure 5. For the rate equation involving [P], we need to add both contributions from the sender and receiver systems and only take a single decay. In the lab,one can "simply" (Biologists clearly agree with this statement) put the sender and receiver to recreate the AimR-AimP system with biobricks.</p>
 +
 +
          <p style="font-size: 20px;font-weight: bold;">Assumption:</p>
 +
          <p>1. Phosphorylation and enzyme complex formation rates must be significantly higher than protein expression rates.</p>
 +
         
 +
          <p>The equations of this model read[8-9]:</p>
 +
 +
      <img width="50%" src="https://static.igem.org/mediawiki/2017/f/f7/T--TMMU-China--model13.png">
 +
 +
 +
 +
 +
      <p style="font-size: 20px;font-weight: bold;">Attention:</p>
 +
          <p>1. [P] denote the concentration of peptide of AimR-AimP system , [aimR], [aimP] and [aimX] respectively denote the concentration of aimR, aimP and aimX, [CP] denote the peptide of AimR-AimP system and aimR complex. </p>
 +
          <p>2. The remaining symbols are defined in Table 2..</p>
 +
 +
      <p style="text-align: center;font-family:'Open Sans', sans-serif;font-size: 13px;">Table 3 Definition of symbols used in the recursion equation</p>
 +
      <img width="50%" src="https://static.igem.org/mediawiki/2017/4/4f/T--TMMU-China--model14.png">
 +
          </br></br></br>
 +
          <h3 style="color: #00a98f;">Analysis and Results:</h3>       
 +
      <p>As it’s shown, in the early stages of the experiment, extracellular signal molecules increased with time, but soon the signal molecules increased to a bottleneck. Into the late experiment, the signal molecules continue to decrease, and ultimately reach a fairly low level, making the signal molecular curve to form a first increase after the trend.</p>
 +
      <img width="55%" src="https://static.igem.org/mediawiki/2017/9/9b/T--TMMU-China--model15.png">
 +
      <p style="text-align: center;font-family:'Open Sans', sans-serif;font-size: 13px;">Figure 6. the gene expression of different type of AimR-AimP systems</p>
 +
 +
 +
          <p>The tendency of this curve above matches well with our experimental data. And this crest-like shape of the curve agrees with previously published results[7].</p>
 +
 +
      <p style="text-align: left;font-family:'Open Sans', sans-serif">Reference:</br>[7] Erez Z, Steinberger-Levy I, Shamir M, et al. Communication between viruses guides lysis-lysogeny decisions[J]. Nature, 2017, 541(7638):488.</br> [8].<a target="_blank" href="https://2008.igem.org/Team:Cambridge/Modeling">https://2008.igem.org/Team:Cambridge/Modeling</a></br>[9].James, E.H., A.M. Edwards, and S. Wigneshweraraj, Transcriptional downregulation of agr expression in Staphylococcus aureus during growth in human serum can be overcome by constitutively active mutant forms of the sensor kinase AgrC. FEMS Microbiol Lett, 2013. 349(2): p. 153-62</p>
 +
 +
 +
 +
      </div>
 +
      </div>
 +
      </div>
 +
      </div>
  
  

Revision as of 17:10, 31 October 2017

Contact us
Email: igem@tmmu.edu.cn
Address:Third Military Medical University,
No.30 Gaotanyan Street Shapingba District,
Chongqing, P.R.China 400038