Difference between revisions of "Team:CIEI-China/Protocols"

(Undo revision 422637 by RuBBiT (talk))
Line 2: Line 2:
 
<html>
 
<html>
 
<head>
 
<head>
 +
<style>
 +
#my-container table{
 +
margin:0;
 +
}
 +
</style>
 
</head>
 
</head>
 
<body>
 
<body>
<div id="my-container">
+
<div id="my-container">
 
<div id="my-sidebar">
 
<div id="my-sidebar">
 
<div class="sidebar__inner">
 
<div class="sidebar__inner">
Line 11: Line 16:
 
</div>
 
</div>
 
<ul class="page-anchors">
 
<ul class="page-anchors">
<li><a href="#a1">Brief Introduction</a>
+
<li><a href="#a1">Protocal</a>
<li><a href="#a2">Urgent Situation</a>
+
 
<ul>
 
<ul>
<li><a href="#a3">We Produce Massive Amounts of Food Waste</a>
+
<li><a href="#a2">Preparing LB and LB agar</a>
 
</li>
 
</li>
</ul></li>
+
<li><a href="#a3">PCR PrimeStar DNA polymerase</a>
<li><a href="#a4">The Composition of Food Waste is Complicated</a>
+
<li><a href="#a5">Inappropriate Food Waste Disposal Causes Severe Harms</a>
+
<ul>
+
<li><a href="#a6">Pollution</a>
+
 
</li>
 
</li>
<li><a href="#a7">Pathophoresis</a>
+
<li><a href="#a4">Recycle the plasmids from PCR products</a>
 
</li>
 
</li>
<li><a href="#a8">Nutrition Loss and Energy Waste</a>
+
<li><a href="#a5">Ligation</a>
 
</li>
 
</li>
</ul></li>
+
<li><a href="#a6">Product from Alkaline Lysis recycle</a>
<li><a href="#a9">Current Methods</a>
+
<ul>
+
<li><a href="#a10">Incineration</a>
+
 
</li>
 
</li>
<li><a href="#a11">Landfill</a>
+
<li><a href="#a7">DNA Electrophoresis</a>
 
</li>
 
</li>
<li><a href="#a12">Aerobic Composting</a>
+
<li><a href="#a8">Sodium dodecyle sulfate poluacrylamide gel electrophoresis</a>
 
</li>
 
</li>
<li><a href="#a13">Anaerobic Composting</a>
+
<li><a href="#a9">Mimic osmotic pressure</a>
 
</li>
 
</li>
</ul></li>
+
<li><a href="#a10">Salt concentration testing of Kitchen waste</a>
<li><a href="#a14">Analysis of Anaerobic Composting</a>
+
<li><a href="#a15">The Problem We Discovered - Osmotic Pressure</a>
+
 
</li>
 
</li>
 +
</ul>
 
</ul>
 
</ul>
 
</div>
 
</div>
 
</div>
 
</div>
 
<div id="my-adjust-content">
 
<div id="my-adjust-content">
<p class="my-content" >Background</p>
+
<div class="first-level" id="a1"  >Protocal</div>
<div class="first-level" id="a1"  >Brief Introduction</div>
+
<div class="second-level" id="a2" >Preparing LB and LB agar</div>
<p class="my-content" >There is one thing people are longing for: a greener world. However, ever since industrial revolution, our environment has been facing an increasingly overwhelming situation: air pollution, energy shortage, global warming…</p>
+
<p class="my-content" >Among all the environmental problems, management of waste is a big issue, especially food waste. According to FAO, nearly 1.3 billion tons of food including fresh vegetables, fruits, meat, bakery, and dairy products were lost along the food supply chain in 2012 (FAO, 2012).</p>
+
<p class="my-content" >Because of its complex composition, food waste is very hard to be disposed or utilized. Furthermore, without proper management, it will lend to tremendous harms to our environment and health. Countries all over the world are making great efforts to solve this problem; however, there is still a long way to go.</p>
+
<div class="first-level" id="a2" >Urgent Situation</div>
+
<div class="second-level" id="a3" >We Produce Massive Amounts of Food Waste</div>
+
<p class="my-content" >Food waste (precooked and leftover) comes from various sources, particularly from food production industries and daily household. Annually, developed and developing countries produce massive amounts of food waste (Fig. 1). For example, in China, the most densely populated country, the food waste reaches a striking amount of 195 million tons each year (Fig. 1b), which equals to the food supply for 200,000,000 people each year. Therefore, effectively dispose these huge amounts of food waste has become a must.</p>
+
<p class="my-content" ><img src="https://static.igem.org/mediawiki/2017/e/eb/CIEI-China--background--fig1.jpg" width="40%" >
+
<img src="https://static.igem.org/mediawiki/2017/d/df/CIEI-China--background--fig11.jpg" width="40%" /></p>
+
<p class="my-content" >Fig. 1 Worldwide Generation of Food Waste in Developed and Developing Countries</p>
+
<div class="first-level" id="a4"  >The Composition of Food Waste is Complicated</div>
+
<p class="my-content" >Because of its complicated composition, Food waste disposal is much more difficult than ordinary waste management. Unlike other kinds of waste, food waste is composed mostly of water (70%-80%); it contains rich amounts of organic substances, such as sugar, protein, and lipid; salt concentration is also especially high. Although in different parts of the world, the proportion of different components may differ in values, the main components are the same (Fig. 2,3) (Tang et al., 2008; Pan, 2006). These characteristics of food waste make it more likely to decay, produce repulsive smell and corrosive solution, and thus deteriorate the environment.</p>
+
<p class="my-content" ><img src="https://static.igem.org/mediawiki/2017/e/e5/T--CIEI-China--Background_Fig2.jpg" width="40%" /><img src="https://static.igem.org/mediawiki/2017/5/51/Background_Fig3.png" width="40%"/></p>
+
<p class="my-content" ><div style="white-space:pre">Fig. 2 Composition of Food Waste in the United States                    Fig. 3 Composition of Food Waste in China</p>
+
<p class="my-content" ></div></p>
+
<div class="first-level" id="a5"  >Inappropriate Food Waste Disposal Causes Severe Harms</div>
+
<p class="my-content" >If not treated appropriately, food waste will give rise to terrible consequences. Such as……</p>
+
<div class="second-level" id="a6" >Pollution</div>
+
<p class="my-content" >Reckless disposal of food waste will pollute the water and soil.</p>
+
<p class="my-content" >The rich organic substances in the food waste, once poured into the waterbody, may cause eutrophication (Evangelist et al., 2014; Salemdeeb and Al-Tabbaa, 2015; Whiting and Azapagic, 2014). Rampant algae will destroy the balance of the ecosystem Fish and other animals who originally live in the area will be unable to adapt themselves to the new environment. In the worst-case scenario, the whole population of some species may go extinct.</p>
+
<p class="my-content" >If the food waste is land-filled, its high salinity may influence the fertility of the soil. The salt in the food waste will accumulate. In the long term, the land may even become alkaline and infertile. Even with careful preservation and treatment, the soil will not recover in the next several decades.</p>
+
<div class="second-level" id="a7" >Pathophoresis</div>
+
<p class="my-content" >After exposed in air for a long time, the nourishing food waste will attract numerous insects, and harmful bacteria may thus grow inside the food waste. Some bacteria can spread over the air, so when people pass by the pile of food waste, they may unconsciously breathe in the bacteria into respiratory system and get infected.</p>
+
<p class="my-content" >Moreover, some farmers feed their animals with untreated food waste. In this case, the situation is even worse, because once the animals get infected, they can spread the disease through the food chain. Avian influenza, foot-and-mouth disease, and mad cow disease all partly resulted from the inconsiderate use of animal forage.</p>
+
<div class="second-level" id="a8" >Nutrition Loss and Energy Waste</div>
+
<p class="my-content" >As the food waste is rich in organic substances, there is a chance that we can recycle it to produce energy and other resources. If we simply dump or land fill our food waste, we are in fact wasting a huge amount of resources. In our world where energy and resources are at the edge of running out, any nutrition loss is unforgivable (Fig. 4) (Paritosh et al., 2017).</p>
+
<p class="my-content" ><img src="https://static.igem.org/mediawiki/2017/7/7e/T--CIEI-China--Background--fig4_a.jpg" width="40%"/><img src="https://static.igem.org/mediawiki/2017/2/22/T--CIEI-China--Background--fig4_b.jpg" width="40%"/></p>
+
<p class="my-content" >Fig. 4 Worldwide Bioenergy Potential from Food Waste in Developed and Developing Countries</p>
+
<p class="my-content" ><b>Undoubtedly, it is extremely urgent to figure out a way to properly manage the troublesome food waste!</b></p>
+
<div class="first-level" id="a9"  >Current Methods</div>
+
<p class="my-content" >Focusing on the issue of food waste, our team analyses the current disposal methods, trying to look for the best solution.</p>
+
<div class="second-level" id="a10" >Incineration</div>
+
<p class="my-content" >Incineration, the combustion of organic substances in the food waste, is a traditional disposal method of the waste. This method can produce electricity by the heat. However, there are many disadvantages.</p>
+
<p class="my-content" >First of all, the high moisture in food waste makes its calorific value far less than the general calorific value in other kinds of waste (3100kJ/kg compared with  7500kJ/kg) (Min et al., 2016); also, during incineration, the temperature of the combustion has to be over 850℃,  to avoid producing cancerogenic substances. Overall, it is not cost-effective.</p>
+
<p class="my-content" >Furthermore, the incineration will cause air pollution, because some squalid substances like ammonia and hydrogen sulfide are produced.</p>
+
<div class="second-level" id="a11" >Landfill</div>
+
<p class="my-content" >Landfill operation condenses the waste in a hollow, and then covers the waste by a layer of soils or woodchips. Though this method is easy and cheap, some countries forbid landfill because of its problem. For example, the limited landfill area cannot satisfy the unlimited food waste, and the leachate of the food waste may cause the secondary pollution of soil and water.</p>
+
<div class="second-level" id="a12" >Aerobic Composting</div>
+
<p class="my-content" >Aerobic composting is a process that the microbes absorb, oxidize and decompose the waste in a ventilated and aerobic enough environment. The principle of the aerobic composting is to transfer complex organics into simpler forms which animals can absorb.</p>
+
<p class="my-content" >However, aerobic composting has strict requirements of moisture and carbon/nitrogen ratio, so it needs large amounts of straws and wood filings to adjust the contents, which are hard to decompose. Furthermore, high osmotic pressure in the food waste affects the efficiency of the composting. Also, the leachate may result in secondary pollutions.</p>
+
<div class="second-level" id="a13" >Anaerobic Composting</div>
+
<p class="my-content" >Anaerobic composting is the opposite. Microbes decomposes the organics in food waste in an anaerobic atmosphere. It generally can be divided into three steps: hydrolysis, acid production and methane production. The final product of this method is methane which can be used as an energy resource.</p>
+
<p class="my-content" >Although the efficiency of the microbes is still limited by the high osmotic pressure, anaerobic composting is in many ways a satisfying approach: it does not have high requirements for moisture or carbon/nitrogen ratio; it produces methane to serve as energy; the space it required is less than its aerobic counterpart required, and the period is also shorter (Table 1)</p>
+
<p class="my-content" ><img src="https://static.igem.org/mediawiki/2017/1/10/T--CIEI-China--Background_Table1.jpg" width="50%"/></p>
+
<p class="my-content" >Table 1 Comparisons among Different Methods of Food Waste Disposal</p>
+
<p class="my-content" >According to Table 1, we can easily conclude that anaerobic composting is the most ideal solution compared with incineration, landfill, and aerobic composting.</p>
+
<p class="my-content" >In order to further our research about food waste disposal, we try to analyze the details of anaerobic composting and see what we can do to improve it.</p>
+
<div class="first-level" id="a14"  >Analysis of Anaerobic Composting</div>
+
<p class="my-content" >Generally in the waste disposal plants, several types of microbes, for example, yeasts, <i>Lactobaillus</i>, and <i>Bacillus subtilis</i>, function together to exert the most powerful effect.</p>
+
<p class="my-content" >During our research, we discovered that yeasts have distinct advantages over other microbes.</p>
+
<p class="my-content" >Anaerobic can be divided into three steps: hydrolysis, fermentation, and methane production (Fig. 5) (Zhao Z., 2009). In the four steps, hydrolysis usually takes the longest time. If we can successfully increase the speed of hydrolysis, we will be able to improve the efficiency of anaerobic composting. Yeasts can serve this function well.</p>
+
<p class="my-content" ><img src="https://static.igem.org/mediawiki/2017/3/39/Background_Fig5.png" /></p>
+
<p class="my-content" >Fig.5 The Process of Anaerobic Composting</p>
+
<p class="my-content" >From the essay <i>Influence of Yeasts on Anaerobic Fermentation of Kitchen Waste for Producing Acetic Acid</i> written by Zhao Zhenhuan, we discovered that yeasts are able to hydrolyze cellulose, lignin, and other macromolecular substances effectively, and thus improve the efficiency. However, the real problem now occurs for us to solve.</p>
+
<div class="first-level" id="a15"  >The Problem We Discovered - Osmotic Pressure</div>
+
<p class="my-content" >As mentioned before, the salt and sugar concentration in food waste is higher than in other kinds of waste, which causes high osmotic pressure. The osmotic pressure is especially high in food waste of Asian countries, with more salt and sugar added to flavor dishes.</p>
+
<p class="my-content" >During the human practice, our team visited the canteen in China Agriculture University. After receiving the admission from the manager, we collected samples of both solid and liquid leftovers in the canteen. Then we analyzed the salt concentration (one factor of osmotic pressure) in these samples as shown in Fig. 6.</p>
+
  
<table border="1" cellpadding="0" style="border-collapse: collapse;">
+
    <table border="1" cellpadding="0" style="border-collapse: collapse;">
<tr>
+
    <caption>LB</caption>
<td>Restaurant Sample</td>
+
<td>1</td>
+
<td>2</td>
+
<td>3</td>
+
<td>4</td>
+
<td>5</td>
+
<td>6</td>
+
<td>average</td>
+
</tr>
+
<tr>
+
<td>Salinity (%)</td>
+
<td>0.64</td>
+
<td>0.32</td>
+
<td>0.51</td>
+
<td>1.43</td>
+
<td>0.32</td>
+
<td>1.68</td>
+
<td>0.82</td>
+
</tr>
+
</table>
+
  
<table border="1" cellpadding="0" style="border-collapse: collapse;">
+
    <tr>
<tr>
+
    <td width="250">Materials</td>
<td>Cateen Sample</td>
+
    <td width="250">Amount</td>
<td>1</td>
+
    </tr>
<td>2</td>
+
<td>3</td>
+
<td>4</td>
+
<td>5</td>
+
<td>average</td>
+
</tr>
+
<tr>
+
<td>Salinity (%)</td>
+
<td>0.58</td>
+
<td>0.72</td>
+
<td>0.51</td>
+
<td>0.72</td>
+
<td>0.84</td>
+
<td>0.67</td>
+
</tr>
+
</table>
+
  
<table border="1" cellpadding="0" style="border-collapse: collapse;">
+
    <tr>
<tr>
+
    <td width="250">Yeast Extract</td>
<td>Family Sample</td>
+
    <td width="250">5 g</td>
<td>1</td>
+
    </tr>
<td>2</td>
+
<td>3</td>
+
<td>4</td>
+
<td>5</td>
+
<td>6</td>
+
<td>7</td>
+
<td>8</td>
+
<td>9</td>
+
<td>10</td>
+
<td>average</td>
+
</tr>
+
<tr>
+
<td>Salinity (%)</td>
+
<td>1.66</td>
+
<td>1.30</td>
+
<td>1.79</td>
+
<td>0.13</td>
+
<td>2.05</td>
+
<td>2.46</td>
+
<td>0.72</td>
+
<td>1.03</td>
+
<td>0.65</td>
+
<td>1.51</td>
+
<td>1.39</td>
+
</tr>
+
</table>
+
  
<p class="my-content" >Fig 6</p>
+
    <tr>
<p class="my-content" >From the literatures, we discovered that if the osmotic pressure in the environment is high enough, it will influence the survivability and decompose efficiency of the microbes, including yeasts. The microbes may die of dehydration, which will definitely decrease the decomposition efficiency, increase the cost and lengthen the duration of food waste disposal. However, during our human practice, we realized that refuse processing plants seldom consider the troublesome issue of osmotic pressure.</p>
+
    <td width="250">Tryptone></td>
<p class="my-content" >Therefore, our team aims to use synthetic biological method to transfer osmotic pressure tolerant gene into the plasmid of yeasts to enhance their resistance to osmotic pressure and thus improve the efficiency of food waste disposal.</p>
+
    <td width="250">10 g</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">NaCl</td>
 +
    <td width="250">10 g</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">ddH<sub>2</sub>O</td>
 +
    <td width="250">To 1 L</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">Ampicillin (20 μg/mL in H2O)</td>
 +
    <td width="250">200 μL</td>
 +
    </tr>
 +
 
 +
    </table><br />
 +
 
 +
<p class="my-content" >1.Add the materials above in a conical flask.</p>
 +
<p class="my-content" >2.Shake the conical flask till all the materials were dissolved.</p>
 +
<p class="my-content" >3.Autoclave the conical flask at 15 psi for 15 min to sterilize on liquid cycle.</p>
 +
 
 +
    <table border="1" cellpadding="0" style="border-collapse: collapse;">
 +
 
 +
    <caption>LB agar</caption>
 +
 
 +
    <tr>
 +
    <td width="250">Materials</td>
 +
    <td width="250">Amount</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">Yeast Extract</td>
 +
    <td width="250">5 g</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">Tryptone</td>
 +
    <td width="250">10 g</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">NaCl</td>
 +
    <td width="250">10 g</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">Agar</td>
 +
    <td width="250">15 g</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">ddH<sub>2</sub>O</td>
 +
    <td width="250">To 1 L</td>
 +
    </tr>
 +
 
 +
    </table><br />
 +
 
 +
<p class="my-content" >1.Add the materials above in a conical flask.</p>
 +
<p class="my-content" >2.Shake the conical flask till all the materials were dissolved.</p>
 +
<p class="my-content" >3.Autoclave the conical flask at 15 psi for 15 min to sterilize on a liquid cycle.</p>
 +
<p class="my-content" >4.Then swirl the conical flask gently. After it cool down to 50~60°C, add antibiotics, Ampicillin. Swirl the flask to mix them up.</p>
 +
<p class="my-content" >5.Pour the LB agar in the conical flask on plates before it solidified.</p>
 +
<div class="second-level" id="a3" >PCR PrimeStar DNA polymerase</div>
 +
<p class="my-content" >1.Prepare the reaction mix in PCR tube:</p>
 +
 
 +
    <table border="1" cellpadding="0" style="border-collapse: collapse;">
 +
    <tr>
 +
    <td width="250">Template DNA</td>
 +
    <td width="250">1 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">Enzyme (prime STAR)</td>
 +
    <td width="250">1 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">Forward Primer</td>
 +
    <td width="250">2 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">Reverse Primer</td>
 +
    <td width="250">2 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">Easy Jag Mix</td>
 +
    <td width="250">25 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">ddH<sub>2</sub>O</td>
 +
    <td width="250">19 μL</td>
 +
    </tr>
 +
 
 +
    </table>
 +
 
 +
<p class="my-content" ><strong>Note: We used two types of template DNA with the volume of 1.5 μL</strong></p>
 +
<p class="my-content" >2.Set the program of thermal cycle:</p>
 +
 
 +
    <table border="1" cellpadding="0" style="border-collapse: collapse;">
 +
 
 +
    <tr>
 +
    <td width="250">1x</td>
 +
    <td width="250">95˚C</td>
 +
    <td width="250">5 min</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">30x</td>
 +
    <td width="250">95˚C</td>
 +
    <td width="250">30 s</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">30x</td>
 +
    <td width="250">55˚C></td>
 +
    <td width="250">30 s</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">30x</td>
 +
    <td width="250">72˚C</td>
 +
    <td width="250">1.5 min</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">1x</td>
 +
    <td width="250">72˚C</td>
 +
    <td width="250">10 min</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">1x</td>
 +
    <td width="250">16˚C</td>
 +
    <td width="250">15 min</td>
 +
    </tr>
 +
 
 +
    </table>
 +
 
 +
<div class="second-level" id="a4" >Recycle the plasmids from PCR products</div>
 +
 
 +
    <table border="1" cellpadding="0" style="border-collapse: collapse;">
 +
 
 +
    <caption></caption>
 +
 
 +
    <tr>
 +
    <td width="250">BL Buffer</td>
 +
    <td width="250">500 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">PB Buffer</td>
 +
    <td width="250">250 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">PW Buffer (with 100% ethyl alcohol)</td>
 +
    <td width="250">600 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">EB Buffer</td>
 +
    <td width="250">40 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">PCR product system</td>
 +
    <td width="250">50 μL</td>
 +
    </tr>
 +
 
 +
    </table><br/>
 +
 
 +
<p class="my-content" >1. Add BL buffer into spin column CB2 (with collection tube of 2 mL) and centrifuge it for 1 min at 12000 rpm. Remove the discard from the collection tube.</p>
 +
<p class="my-content" >2. Add the PCR product and PB buffer in the CB2 and mix them evenly. (Notice: If the PCR product system is XμL, add 5XμL PB buffer)</p>
 +
<p class="my-content" >3. Leave the mixture for 2 min and then centrifuge it for 1 min at 12000 rpm. Remove the discard from the collection tube. (Notice: The max volume of column is 800 μL, if the sample volume is more than 800 μL, you can repeat step 3)</p>
 +
<p class="my-content" >4. Add 600μl of Buffer PW to column CB2. Centrifuge it at 12,000 rpm for 30-60 sec in a microfuge. Pour the discard solution from the tubes; put columns CB2 back to the tube. Store the tube at room temperature for 2-5 min.</p>
 +
<p class="my-content" >5. Repeat step 4 once.</p>
 +
<p class="my-content" >6. Centrifuge the tube at 12,000 rpm for 2 min, pour the discard solution. Store the tube at room temperature for 5 min, open the tube to leave the column as dry as possible. Take the DNA solution in the collection tube to carry out gel electrophoresis.</p>
 +
<div class="second-level" id="a5" >Ligation</div>
 +
 
 +
    <table border="1" cellpadding="0" style="border-collapse: collapse;">
 +
 
 +
    <tr>
 +
    <td width="250">10×Loading Buffer</td>
 +
    <td width="250">2.5 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">Ligase</td>
 +
    <td width="250">2.5 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">AD plasmid fragment</td>
 +
    <td width="250">10 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">BD SOS fragment</td>
 +
    <td width="250">10 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">Total</td>
 +
    <td width="250">25 μL</td>
 +
    </tr>
 +
 
 +
    </table><br />
 +
 
 +
<p class="my-content" >1.Mix the materials above in a 0.2 mL microfuge tube.</p>
 +
<p class="my-content" >2.Incubate the mixture at 4 C overnight or at 16 C for 2-3 hrs.</p>
 +
<div class="second-level" id="a6" >Product from Alkaline Lysis recycle</div>
 +
 
 +
    <table border="1" cellpadding="0" style="border-collapse: collapse;">
 +
 
 +
    <tr>
 +
    <td width="250">Template</td>
 +
    <td width="250">1400 μL*2</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">P1</td>
 +
    <td width="250">1 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">P2</td>
 +
    <td width="250">2 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">P3</td>
 +
    <td width="250">2 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">Washing Buffer</td>
 +
    <td width="250">19 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">Elution Buffer</td>
 +
    <td width="250">1 μL</td>
 +
    </tr>
 +
 
 +
    </table>
 +
 
 +
<p class="my-content" ><strong>Note: Templates include carrier with target gene (<i>gltB</i>, <i>ScTPS1</i> and <i>SpTPS1</i>)</strong></p>
 +
<p class="my-content" >1.Pour 1400 μL of the culture into a microfuge tube. Centrifuge the mixture at 12,000 rpm for 1 min in a microfuge. Pour the discard solution, leaving the leftover as dry as possible.</p>
 +
<p class="my-content" >2.Repeat step 1 once.</p>
 +
<p class="my-content" >3.Add 400 μL solutions P1 into the microfuge tube, wait until all deposition dissolves.</p>
 +
<p class="my-content" >4.Add 400 μL solutions P2 to the microfuge tube; mix the content by inverting the tube rapidly for five times.</p>
 +
<p class="my-content" >5.Add 560 μL solutions P3 to the mixture, wait until all deposition dissolves.</p>
 +
<p class="my-content" >6.Centrifuge the microfuge at 12,000 rpm for 10 min. Transfer the supernatant into a fresh column which is in a tube.</p>
 +
<p class="my-content" >7.Centrifuge the supernatant at 12,000 rpm for 1 min in a microfuge. Discard the solution in tube.</p>
 +
<p class="my-content" >8.Add 700 μL Washing buffer (PB) to the column, then centrifuge the mixture at 12,000 rpm for 1 min. Pour the discard solution in tube.</p>
 +
<p class="my-content" >9.Add 500 μL Washing buffer (PB) to the column, then centrifuge the mixture at 12,000 rpm for 1 min. Pour the discard solution in tube.</p>
 +
<p class="my-content" >10.Centrifuge the tube at 12,000 rpm for 2 min, then open the tube and dry the column.</p>
 +
<p class="my-content" >11.Transfer the column to a fresh microfuge tube, then add 80 μL Elution buffer (EB), store it at room temperature for 5 min.</p>
 +
<p class="my-content" >12.Centrifuge the microfuge tube at 12,000 rpm for 1 min, and then discard the column.</p>
 +
<p class="my-content" >13.Collect the leftover in tube after centrifuge, which was the plasmid DNA</p>
 +
<div class="second-level" id="a7" >DNA Electrophoresis</div>
 +
<p class="my-content" >1.Mix 0.25 g of agarose with 25 g of TAE solution, and then heat the mixture until the agarose is fully dissolved.</p>
 +
<p class="my-content" >2.Pour the mixture into a square mould. Plug in the comb, and wait until the mixture solidifies.</p>
 +
<p class="my-content" >3.Put the gel into the electrophoresis apparatus, and then fill it with TAE solution.</p>
 +
<p class="my-content" >4.Add 1 μL of loading buffer and 1 μL of SYBR Gold into 5 μL of the sample.</p>
 +
<p class="my-content" >5.Load the sample and marker into the gel. Connect two sides with the electric source. Set the voltage at 120 V and then wait for 30-40 min.</p>
 +
<p class="my-content" >6.Take the gel out, and observe the results under UV transillumination.</p>
 +
<div class="second-level" id="a8" >Sodium dodecyle sulfate poluacrylamide gel electrophoresis</div>
 +
 
 +
    <table border="1" cellpadding="0" style="border-collapse: collapse;">
 +
 
 +
    <caption>Separating gel (12%)</caption>
 +
 
 +
    <tr>
 +
    <td width="250">dd water</td>
 +
    <td width="250">3.92 mL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">30% Acr-Bis</td>
 +
    <td width="250">4.80 mL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">1.5M Tris (pH 8.8)</td>
 +
    <td width="250">3.04 mL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">10% SDS</td>
 +
    <td width="250">120.00 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">10% ammonium persulfate</td>
 +
    <td width="250">120.00 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">TEMED</td>
 +
    <td width="250">4.8 μL</td>
 +
    </tr>
 +
 
 +
    </table>
 +
 
 +
<p class="my-content" ><strong>Note: waiting 40min until it become solid</strong></p>
 +
 
 +
    <table border="1" cellpadding="0" style="border-collapse: collapse;">
 +
 
 +
    <caption>Stacking gel (5%)</caption>
 +
 
 +
    <tr>
 +
    <td width="250">dd water</td>
 +
    <td width="250">2.04 mL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">30% Acr-Bis</td>
 +
    <td width="250">0.51 mL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">1.0M Tris (pH 6.8)</td>
 +
    <td width="250">0.375 mL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">10% SDS</td>
 +
    <td width="250">30 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">10% ammonium persulfate</td>
 +
    <td width="250">30 μL</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">TEMED</td>
 +
    <td width="250">3 μL</td>
 +
    </tr>
 +
 
 +
    </table>
 +
 
 +
<p class="my-content" ><strong>Note: waiting 40min until it become solid</strong></p>
 +
<p class="my-content" >1.Assemble the gel into the electrophoresis apparatus, and then fill the inner chamber with buffer.</p>
 +
<p class="my-content" >2.Remove the comb carefully, then load the sample and marker. The volume of each specimen is 10-15 μL.</p>
 +
<p class="my-content" >3.Fill the bottom of the outer chamber from the top of the gel box.</p>
 +
<p class="my-content" >4.Attach the power supply, set the voltage at 80 V, after 20 min until the sample move into the separating gel, and then change it into 100 V. When the bromophenol blue reach the bottom, stop it.</p>
 +
<div class="second-level" id="a9" >Mimic osmotic pressure</div>
 +
 
 +
    <table border="1" cellpadding="0" style="border-collapse: collapse;">
 +
 
 +
    <caption>YPD agar</caption>
 +
 
 +
    <tr>
 +
    <td width="250">Materials</td>
 +
    <td width="250">Amount</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">1% Yeast Extract</td>
 +
    <td width="250">10 g</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">2% Peptone</td>
 +
    <td width="250">20 g</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">2% Dextrose</td>
 +
    <td width="250">100ml</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">Agar</td>
 +
    <td width="250">20 g</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">ddH<sub>2</sub>O</td>
 +
    <td width="250">To 1 L</td>
 +
    </tr>
 +
 
 +
    <tr>
 +
    <td width="250">salinity</td>
 +
    <td width="250">0%, 0.5%, 0.75%, 1%, 1.25%</td>
 +
    </tr>
 +
 
 +
    </table><br />
 +
 
 +
 
 +
<p class="my-content" >1.Add the materials above in a conical flask (except the dextrose).</p>
 +
<p class="my-content" >2.Shake the conical flask till all the materials were dissolved.</p>
 +
<p class="my-content" >3.Autoclave the conical flask at 121°C for 20 min to sterilize on a liquid cycle.</p>
 +
<p class="my-content" >4.Then swirl the conical flask gently. After it cool down to 50~60°C, add dextrose. Swirl the flask to mix them up.</p>
 +
<p class="my-content" >5.Pour the LB agar in the conical flask on plates before it solidified.</p>
 +
<p class="my-content" >6.Culture yeast that with our target gene and the yeast without our target gene. Couple days later, then test the survival rate of both kinds of yeasts.</p>
 +
 
 +
<div class="second-level" id="a10" >Salt concentration testing of Kitchen waste</div>
 +
 
 +
<p class="my-content" >1.Dry the materials thoroughly in the oven. </p>
 +
<p class="my-content" >2.Grind the dried materials into powder; weigh them, then add five times volume (mass-to-volume ratio) of boiling distilled water and fully mix them. (For example, 5g dried powder require adding 25mL boiling distilled water.) Extract the supernatant after standing or filtration.</p>
 +
<p class="my-content" >3. Measure conductivity of the supernatant by conductivity meter and convert the data into salt concentration. (At 25̊C, based on the mass/volume ratio of 1:5, the salt concentration is calculated as the conductivity multiplied by 0.064.)</p>
 +
<p class="my-content" ><strong>Principle: according to the fact that the salt concentration is proportional to the conductivity, the salt concentration can be calculated by measuring the conductivity of the samples.</strong></p>
 
</div>
 
</div>
 
</div>
 
</div>
  
 
<script type="text/javascript" src="https://2017.igem.org/Team:CIEI-BJ/js/nav/left_fix_run?action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2017.igem.org/Team:CIEI-BJ/js/nav/left_fix_run?action=raw&ctype=text/javascript"></script>
 +
  
 
</body>
 
</body>
 
</html>
 
</html>

Revision as of 13:00, 1 November 2017

Protocal
Preparing LB and LB agar
LB
Materials Amount
Yeast Extract 5 g
Tryptone> 10 g
NaCl 10 g
ddH2O To 1 L
Ampicillin (20 μg/mL in H2O) 200 μL

1.Add the materials above in a conical flask.

2.Shake the conical flask till all the materials were dissolved.

3.Autoclave the conical flask at 15 psi for 15 min to sterilize on liquid cycle.

LB agar
Materials Amount
Yeast Extract 5 g
Tryptone 10 g
NaCl 10 g
Agar 15 g
ddH2O To 1 L

1.Add the materials above in a conical flask.

2.Shake the conical flask till all the materials were dissolved.

3.Autoclave the conical flask at 15 psi for 15 min to sterilize on a liquid cycle.

4.Then swirl the conical flask gently. After it cool down to 50~60°C, add antibiotics, Ampicillin. Swirl the flask to mix them up.

5.Pour the LB agar in the conical flask on plates before it solidified.

PCR PrimeStar DNA polymerase

1.Prepare the reaction mix in PCR tube:

Template DNA 1 μL
Enzyme (prime STAR) 1 μL
Forward Primer 2 μL
Reverse Primer 2 μL
Easy Jag Mix 25 μL
ddH2O 19 μL

Note: We used two types of template DNA with the volume of 1.5 μL

2.Set the program of thermal cycle:

1x 95˚C 5 min
30x 95˚C 30 s
30x 55˚C> 30 s
30x 72˚C 1.5 min
1x 72˚C 10 min
1x 16˚C 15 min
Recycle the plasmids from PCR products
BL Buffer 500 μL
PB Buffer 250 μL
PW Buffer (with 100% ethyl alcohol) 600 μL
EB Buffer 40 μL
PCR product system 50 μL

1. Add BL buffer into spin column CB2 (with collection tube of 2 mL) and centrifuge it for 1 min at 12000 rpm. Remove the discard from the collection tube.

2. Add the PCR product and PB buffer in the CB2 and mix them evenly. (Notice: If the PCR product system is XμL, add 5XμL PB buffer)

3. Leave the mixture for 2 min and then centrifuge it for 1 min at 12000 rpm. Remove the discard from the collection tube. (Notice: The max volume of column is 800 μL, if the sample volume is more than 800 μL, you can repeat step 3)

4. Add 600μl of Buffer PW to column CB2. Centrifuge it at 12,000 rpm for 30-60 sec in a microfuge. Pour the discard solution from the tubes; put columns CB2 back to the tube. Store the tube at room temperature for 2-5 min.

5. Repeat step 4 once.

6. Centrifuge the tube at 12,000 rpm for 2 min, pour the discard solution. Store the tube at room temperature for 5 min, open the tube to leave the column as dry as possible. Take the DNA solution in the collection tube to carry out gel electrophoresis.

Ligation
10×Loading Buffer 2.5 μL
Ligase 2.5 μL
AD plasmid fragment 10 μL
BD SOS fragment 10 μL
Total 25 μL

1.Mix the materials above in a 0.2 mL microfuge tube.

2.Incubate the mixture at 4 C overnight or at 16 C for 2-3 hrs.

Product from Alkaline Lysis recycle
Template 1400 μL*2
P1 1 μL
P2 2 μL
P3 2 μL
Washing Buffer 19 μL
Elution Buffer 1 μL

Note: Templates include carrier with target gene (gltB, ScTPS1 and SpTPS1)

1.Pour 1400 μL of the culture into a microfuge tube. Centrifuge the mixture at 12,000 rpm for 1 min in a microfuge. Pour the discard solution, leaving the leftover as dry as possible.

2.Repeat step 1 once.

3.Add 400 μL solutions P1 into the microfuge tube, wait until all deposition dissolves.

4.Add 400 μL solutions P2 to the microfuge tube; mix the content by inverting the tube rapidly for five times.

5.Add 560 μL solutions P3 to the mixture, wait until all deposition dissolves.

6.Centrifuge the microfuge at 12,000 rpm for 10 min. Transfer the supernatant into a fresh column which is in a tube.

7.Centrifuge the supernatant at 12,000 rpm for 1 min in a microfuge. Discard the solution in tube.

8.Add 700 μL Washing buffer (PB) to the column, then centrifuge the mixture at 12,000 rpm for 1 min. Pour the discard solution in tube.

9.Add 500 μL Washing buffer (PB) to the column, then centrifuge the mixture at 12,000 rpm for 1 min. Pour the discard solution in tube.

10.Centrifuge the tube at 12,000 rpm for 2 min, then open the tube and dry the column.

11.Transfer the column to a fresh microfuge tube, then add 80 μL Elution buffer (EB), store it at room temperature for 5 min.

12.Centrifuge the microfuge tube at 12,000 rpm for 1 min, and then discard the column.

13.Collect the leftover in tube after centrifuge, which was the plasmid DNA

DNA Electrophoresis

1.Mix 0.25 g of agarose with 25 g of TAE solution, and then heat the mixture until the agarose is fully dissolved.

2.Pour the mixture into a square mould. Plug in the comb, and wait until the mixture solidifies.

3.Put the gel into the electrophoresis apparatus, and then fill it with TAE solution.

4.Add 1 μL of loading buffer and 1 μL of SYBR Gold into 5 μL of the sample.

5.Load the sample and marker into the gel. Connect two sides with the electric source. Set the voltage at 120 V and then wait for 30-40 min.

6.Take the gel out, and observe the results under UV transillumination.

Sodium dodecyle sulfate poluacrylamide gel electrophoresis
Separating gel (12%)
dd water 3.92 mL
30% Acr-Bis 4.80 mL
1.5M Tris (pH 8.8) 3.04 mL
10% SDS 120.00 μL
10% ammonium persulfate 120.00 μL
TEMED 4.8 μL

Note: waiting 40min until it become solid

Stacking gel (5%)
dd water 2.04 mL
30% Acr-Bis 0.51 mL
1.0M Tris (pH 6.8) 0.375 mL
10% SDS 30 μL
10% ammonium persulfate 30 μL
TEMED 3 μL

Note: waiting 40min until it become solid

1.Assemble the gel into the electrophoresis apparatus, and then fill the inner chamber with buffer.

2.Remove the comb carefully, then load the sample and marker. The volume of each specimen is 10-15 μL.

3.Fill the bottom of the outer chamber from the top of the gel box.

4.Attach the power supply, set the voltage at 80 V, after 20 min until the sample move into the separating gel, and then change it into 100 V. When the bromophenol blue reach the bottom, stop it.

Mimic osmotic pressure
YPD agar
Materials Amount
1% Yeast Extract 10 g
2% Peptone 20 g
2% Dextrose 100ml
Agar 20 g
ddH2O To 1 L
salinity 0%, 0.5%, 0.75%, 1%, 1.25%

1.Add the materials above in a conical flask (except the dextrose).

2.Shake the conical flask till all the materials were dissolved.

3.Autoclave the conical flask at 121°C for 20 min to sterilize on a liquid cycle.

4.Then swirl the conical flask gently. After it cool down to 50~60°C, add dextrose. Swirl the flask to mix them up.

5.Pour the LB agar in the conical flask on plates before it solidified.

6.Culture yeast that with our target gene and the yeast without our target gene. Couple days later, then test the survival rate of both kinds of yeasts.

Salt concentration testing of Kitchen waste

1.Dry the materials thoroughly in the oven.

2.Grind the dried materials into powder; weigh them, then add five times volume (mass-to-volume ratio) of boiling distilled water and fully mix them. (For example, 5g dried powder require adding 25mL boiling distilled water.) Extract the supernatant after standing or filtration.

3. Measure conductivity of the supernatant by conductivity meter and convert the data into salt concentration. (At 25̊C, based on the mass/volume ratio of 1:5, the salt concentration is calculated as the conductivity multiplied by 0.064.)

Principle: according to the fact that the salt concentration is proportional to the conductivity, the salt concentration can be calculated by measuring the conductivity of the samples.