Difference between revisions of "Team:Vilnius-Lithuania/Design"

Line 291: Line 291:
 
     <div class="modal-content">
 
     <div class="modal-content">
 
         <h1>Selection system</h1>
 
         <h1>Selection system</h1>
         <h5>ISplit antibiotic – 2 plasmids system</h5>
+
         <h5>Split antibiotic – 2 plasmids system</h5>
 
         <p>One of the essential parts of synthetic biology are plasmids. However, bacterial plasmid systems require a unique selection, usually an antibiotic resistance gene, to stably maintain the plasmids. As the number of different plasmid groups used in a single cell rise, the need for more selection markers grows. In addition to raising the issue of biosafety, the use of multiple antibiotic resistance genes destabilizes the functionality of the cells. To address this problem a protein granting the resistance to aminoglycoside family antibiotics, called amino 3'-glycosyl phosphotransferase (APH(3')), was split into two subunits by Calvin M. Schmidt et al. </p><p>
 
         <p>One of the essential parts of synthetic biology are plasmids. However, bacterial plasmid systems require a unique selection, usually an antibiotic resistance gene, to stably maintain the plasmids. As the number of different plasmid groups used in a single cell rise, the need for more selection markers grows. In addition to raising the issue of biosafety, the use of multiple antibiotic resistance genes destabilizes the functionality of the cells. To address this problem a protein granting the resistance to aminoglycoside family antibiotics, called amino 3'-glycosyl phosphotransferase (APH(3')), was split into two subunits by Calvin M. Schmidt et al. </p><p>
 
According to the obscure guidelines we split an unmodified neo gene sequence between 59 and 60 amino acid residues. Two subunits were termed α-neo and β-neo. Furthermore, we added additional termination codon at the end of an α-neo fragment for the translation to stop. No other start codons were included into the β-neo subunit as the gene was designed for toehold switch system. Despite the fact that β-neo subunit had no start codon, the split antibiotic system worked perfectly when coupled with a standard promoter and a ribosome binding site (BBa_K608002). Consequently, a split antibiotic resistance gene provides a selection system to stably maintain two different plasmids.
 
According to the obscure guidelines we split an unmodified neo gene sequence between 59 and 60 amino acid residues. Two subunits were termed α-neo and β-neo. Furthermore, we added additional termination codon at the end of an α-neo fragment for the translation to stop. No other start codons were included into the β-neo subunit as the gene was designed for toehold switch system. Despite the fact that β-neo subunit had no start codon, the split antibiotic system worked perfectly when coupled with a standard promoter and a ribosome binding site (BBa_K608002). Consequently, a split antibiotic resistance gene provides a selection system to stably maintain two different plasmids.

Revision as of 14:06, 1 November 2017

use keyboard, swipe or scroll

Plasmid copy number control

Design

Flexible copy number control is the core of our framework, which is based on re-engineered ColE1 origin of replicon.

read more