Difference between revisions of "Team:Shenzhen SFLS/Model"

Line 15: Line 15:
 
   <!-- Main -->
 
   <!-- Main -->
 
   <script src="https://2017.igem.org/Template:Shenzhen_SFLS/js/main?action=raw&ctype=text/javascript"></script>
 
   <script src="https://2017.igem.org/Template:Shenzhen_SFLS/js/main?action=raw&ctype=text/javascript"></script>
 +
  <style type="text/css">
 +
    #reference li {
 +
      list-style-type: decimal;
 +
    }
  
 +
    #main h3 {
 +
      font-size: 18px !important;
 +
      color: #00cfc8;
 +
    }
 +
 +
    #BigTitle {
 +
      background: #361B4D;
 +
    }
 +
 +
    #BigTitle a {
 +
      color: #F0E8C4;
 +
    }
 +
 +
    #BigTitle:hover {
 +
      background: #ECF8DB;
 +
      color: #924E7E;
 +
    }
 +
 +
    #BigTitle a:hover {
 +
      background: #ECF8DB;
 +
      color: #924E7E;
 +
    }
 +
  </style>
  
 
</head>
 
</head>
Line 31: Line 58:
  
 
   <div class="marin_top">
 
   <div class="marin_top">
<div class="marin_top_content">
+
    <div class="marin_top_content">
    <div id="tbox">
+
      <div id="tbox">
      <!-- 这个必须有  id="tbox"-->
+
        <!-- 这个必须有  id="tbox"-->
      <a class="taoba" href="#index_1" title="1">Introduction</a>
+
        <ul class="ul_t">
      <a class="taoba" href="#index_2" title="2">Methods</a>
+
          <li class="taoyu" href="#index_0" id="BigTitle">
      <a class="taoba" href="#index_3" title="3">Results</a>
+
            <div class="taoyu_title"> <a href="#index_0" title="0">Off-target Prediction</a></div>
      <a class="taoba" href="#index_4" title="3">Conclusion</a>
+
          </li>
 +
          <li class="taoyu" href="#index_1">
 +
            <div class="taoyu_title"> <a href="#index_1" title="1">Introduction</a></div>
 +
          </li>
 +
          <li class="taoyu" href="#index_2">
 +
            <div class="taoyu_title"> <a href="#index_2" title="2">Methods</a></div>
 +
          </li>
 +
          <li class="taoyu" href="#index_3">
 +
            <div class="taoyu_title"> <a href="#index_3" title="3">Results</a></div>
 +
          </li>
 +
          <li class="taoyu" href="#index_4">
 +
            <div class="taoyu_title"> <a href="#index_4" title="4">Conclusion</a></div>
 +
          </li>
 +
          </br>
 +
          <li class="taoyu" href="#index_5" id="BigTitle">
 +
            <div class="taoyu_title"> <a href="#index_5" title="5">Drug Designing</a></div>
 +
          </li>
 +
          <li class="taoyu" href="#index_6">
 +
            <div class="taoyu_title"> <a href="#index_6" title="6">Introduction</a></div>
 +
          </li>
 +
          <li class="taoyu" href="#index_7">
 +
            <div class="taoyu_title"> <a href="#index_7" title="7">Diffusion part</a></div>
 +
          </li>
 +
          <li class="taoyu" href="#index_8">
 +
            <div class="taoyu_title"> <a href="#index_8" title="8">Reaction part</a></div>
 +
          </li>
 +
          <li class="taoyu" href="#index_9">
 +
            <div class="taoyu_title"> <a href="#index_9" title="9">Future work</a></div>
 +
          </li>
  
 +
        </ul>
 +
      </div>
  
  
      <a id="gotop" href="javascript:void(0)" title="回到顶部">回到顶部</a>
 
      <!-- 这个也是id="gotop"  -->
 
    </div>
 
  
    <div class="main_context" id="main">
+
      <div class="main_context" id="main">
 +
        <div class="row">
 +
 
 +
          <div class="mainpage mainpage5">
 +
            <h3 id="index_0">Prediction of Off-target Effect</h3>
 +
          </div>
 +
        </div>
 +
 
 +
        <div class="row">
  
      <div class="row">
 
  
        <div class="mainpage mainpage1">
+
          <div class="mainpage mainpage1">
          <h5 id="index_1">INTRODUCTION</h5>
+
            <h5 id="index_1">INTRODUCTION</h5>
<p>Since the CRISPR/Cas9 system wasfirstly used in genetic engineering, the researches on its off-target effects have never stopped. The methods of Hsu-Zhang scoring (1) and CCTop (2) are two widely used algorithms for designing a single guide RNA (sgRNA) sequence and finding potential off-target locus. Last year, a new algorithm named CFD (Cutting Frequency Determination) scoring method was developed to evaluate potential off-target sits with 240 parameters (Fig. 1) (3). All of these three methods (Hsu-Zhang scoring, CCTop, and CFD) take into consideration different weight coefficients of different mismatch position, however, only CFD scoring method considers mismatch types as a factor as well.</p>
+
            <p>Since the CRISPR/Cas9 system wasfirstly used in genetic engineering, the researches on its off-target effects have never stopped. The methods of Hsu-Zhang scoring (1) and CCTop (2) are two widely used algorithms for designing a single guide
          <div class="picture">
+
              RNA (sgRNA) sequence and finding potential off-target locus. Last year, a new algorithm named CFD (Cutting Frequency Determination) scoring method was developed to evaluate potential off-target sits with 240 parameters (Fig. 1) (3). All
            <img src="https://static.igem.org/mediawiki/2017/5/5b/SFLS_2017_Modeling_CFDscore.png" width="500" alt="demonstrate_fig.1">
+
              of these three methods (Hsu-Zhang scoring, CCTop, and CFD) take into consideration different weight coefficients of different mismatch position, however, only CFD scoring method considers mismatch types as a factor as well.</p>
 +
            <div class="picture">
 +
              <img src="https://static.igem.org/mediawiki/2017/5/5b/SFLS_2017_Modeling_CFDscore.png" width="500" alt="demonstrate_fig.1">
 +
            </div>
 +
            <br/><br/>
 +
            <div class="picture">
 +
              <img src="https://static.igem.org/mediawiki/2017/b/b7/SFLS_2017_Modeling_Mismatch_types.png" width="700" alt="demonstrate_fig.2">
 +
            </div>
 +
            <br/><br/>
 
           </div>
 
           </div>
          <br/><br/>
+
 
           <div class="picture">
+
 
             <img src="https://static.igem.org/mediawiki/2017/b/b7/SFLS_2017_Modeling_Mismatch_types.png" width="700" alt="demonstrate_fig.2">
+
           <p>Fig.1 The values of CFD scores change over mismatch positions and types (Data derived from Doench 2016). Mismatch position is counted from 5’ end of gene, position 20 represent the nucleotide nearest to protospacer adjacent motif (PAM), and
          </div>
+
             position 1 represent the nucleotide furthest from PAM.</p>
          <br/><br/>
+
 
 +
 
 
         </div>
 
         </div>
 +
        <br/><br/><br/>
  
 +
        <div class="row">
  
<p>Fig.1 The values of CFD scores change over mismatch positions and types (Data derived from Doench 2016). Mismatch position is counted from 5’ end of gene, position 20 represent the nucleotide nearest to protospacer adjacent motif (PAM), and position 1 represent the nucleotide furthest from PAM.</p>
 
  
 +
          <div class="mainpage mainpage2">
 +
            <h5 id="index_2">Methods</h5>
 +
            <p>We chose to use CFD scoring method instead of Hsu-Zhang scoring or CCTop for the following reasons: Firstly, it is reported that the CFD method has higher Pearson correlation (3), compared with Hsu-Zhang scoring method and CCTop, especially
 +
              when the number of mismatched bases is large; Secondly, Computing the scores by using CFD method is much easier than the other two methods. </p>
 +
            <p>In order to obtain the CFD score of a certain DNA locus, we multiply all the scores of single base mismatch together. If the DNA loci and sgRNA has mismatched bases at position α, β, γ… with mismatch type rA-dC, rC-dC, rU-dT…(Fig. 1B), its
 +
              CFD score is calculated as:</p>
 +
            <div class="picture">
 +
              <img src="https://static.igem.org/mediawiki/2017/a/ad/SFLS_2017_Modeling_CFD_score_calculation.png" width="700" alt="demonstrate-sequencing">
 +
            </div>
 +
            <br/><br/>
 +
            <p>It is reported that about 60% of melanomas contain a mutation in the v-raf murine sarcoma viral oncogene homolog B (BRAF), and V600E (1799T> A) variation (Fig. 2) in BRAF is the main type of mutations in the cancer tissues, which plays a critical
 +
              role in carcinogenesis of melanoma.</p>
  
      </div>
+
            <div class="picture">
      <br/><br/><br/>
+
              <img src="https://static.igem.org/mediawiki/2017/5/58/SFLS_2017_Modeling_V600E.png" width="500" alt="demonstrate-sequencing-ATCG">
 +
            </div>
  
      <div class="row">
+
            <p>Fig. 2 The graphic of BRAF 1799T>A (V600E) mutation</p>
  
  
        <div class="mainpage mainpage2">
+
 
          <h5 id="index_2">Methods</h5>
+
            <br/><br/>
          <p>We chose to use CFD scoring method instead of Hsu-Zhang scoring or CCTop for the following reasons: Firstly, it is reported that the CFD method has higher Pearson correlation (3), compared with Hsu-Zhang scoring method and CCTop, especially when the number of mismatched bases is large; Secondly, Computing the scores by using CFD method is much easier than the other two methods. </p>
+
            <p>In our project, we try to disrupt the mutant BRAF in the two melanoma cell lines (A375 and G361) by CRISPR/Cas9 technology. A typical PAM is ‘NGG’. However, we didn’t find it. It has been reported that alternative PAM sequence ‘NAG’ has rather
          <p>In order to obtain the CFD score of a certain DNA locus, we multiply all the scores of single base mismatch together. If the DNA loci and sgRNA has mismatched bases at position α, β, γ… with mismatch type rA-dC, rC-dC, rU-dT…(Fig. 1B), its CFD score is calculated as:</p>
+
              high cleavage efficiency while ‘NTG’ shows no tendency of cutting (3). To meet the goal of specifical cleavage, we arranged the mutant base on the three PAM bases as shown in Fig 3. </p>
          <div class="picture">
+
            <div class="picture">
            <img src="https://static.igem.org/mediawiki/2017/a/ad/SFLS_2017_Modeling_CFD_score_calculation.png" width="700" alt="demonstrate-sequencing">
+
              <img src="https://static.igem.org/mediawiki/2017/7/7e/SFLS_2017_Modeling_target_region_%26_sgRNA.png" width="700" alt="demonstrate-sequencing-ATCG">
 +
            </div>
 +
 
 +
            <p>Fig.3 The sgRNA for targeting mutant BRAf in melanoma cells</p>
 +
 
 +
            <br/><br/>
 +
            <p>After setting the sgRNA sequence, we searched for the potential off-target locus. The potential off-target locus must meet the following conditions: 1) Having a PAM sequence (‘NGG’, ‘NAG’, ‘NCG’, or ‘NGA’) at 3’ end; 2) Base identities are
 +
              more than 13 identified by <a href="https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM =blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome">MegaBLAST</a>; 3) CFD score is greater than 5%.</p>
 +
 
 
           </div>
 
           </div>
          <br/><br/>
 
          <p>It is reported that about 60% of melanomas contain a mutation in the v-raf murine sarcoma viral oncogene homolog B (BRAF), and V600E (1799T> A) variation (Fig. 2) in BRAF is the main type of mutations in the cancer tissues, which plays a critical role in carcinogenesis of melanoma.</p>
 
  
           <div class="picture">
+
 
             <img src="https://static.igem.org/mediawiki/2017/5/58/SFLS_2017_Modeling_V600E.png" width="500" alt="demonstrate-sequencing-ATCG">
+
 
 +
        </div>
 +
        <br/><br/><br/>
 +
 
 +
        <div class="row">
 +
 
 +
           <div class="mainpage mainpage3">
 +
            <h5 id="index_3">RESULTS</h5>
 +
            <p>Using Megablast, we find that over 500 alignments have potential off-target effects, and 62 of them have a PAM sequence (‘NGG’, ‘NAG’, ‘NCG’, or ‘NGA’). Seven of them are scored higher than 5% (Fig. 4). Since ‘NGG’ PAM has much higher efficiency
 +
              of cleavage than ‘NAG’ (Fig.5)(3), the off-target probability of Seq 2, 3, 4, 5, 6 and 7 may be higher than its scores.</p>
 +
            <div class="picture">
 +
              <img src="https://static.igem.org/mediawiki/2017/d/df/SFLS_2017_Modeling_potential_off_target_region.png" width="700" alt="demonstrate-sequencing-ATCG">
 +
             </div>
 +
 
 +
            <p>Fig.4 Potential off-target sites of our sgRNA. PAM is marked in red. Compared with the sgRNA, the different bases are marked in yellow.</p>
 +
            <br/><br/>
 +
            <div class="picture">
 +
              <img src="https://static.igem.org/mediawiki/2017/d/d2/SFLS_2017_Modeling_PAM.png" width="400" alt="demonstrate-sequencing-ATCG">
 +
            </div>
 +
            <br/><br/>
 +
 
 
           </div>
 
           </div>
  
<p>Fig. 2 The graphic of BRAF 1799T>A (V600E) mutation</p>
+
          <p>Fig.5 Proportion of active sgRNAs with different PAM (Data derived from Doench 2016)</p>
 +
 
 +
 
 +
 
 +
        </div>
 +
        <br/><br/><br/>
 +
 
  
 +
        <div class="row">
  
  
           <br/><br/>
+
           <div class="mainpage mainpage2" id="reference">
          <p>In our project, we try to disrupt the mutant BRAF in the two melanoma cell lines (A375 and G361) by CRISPR/Cas9 technology. A typical PAM is ‘NGG’. However, we didn’t find it. It has been reported that alternative PAM sequence ‘NAG’ has rather high cleavage efficiency while ‘NTG’ shows no tendency of cutting (3). To meet the goal of specifical cleavage, we arranged the mutant base on the three PAM bases as shown in Fig 3. </p>
+
            <h5 id="index_4">Conclusion</h5>
          <div class="picture">
+
            <p>Our sgRNA sequence has high cleavage efficiency on the mutated BRAF gene, as well as a high risk of off-target effect. To avoid the off-target effect, we designed an artificial microRNA complementary to SAMMSON gene, which is specifically
            <img src="https://static.igem.org/mediawiki/2017/7/7e/SFLS_2017_Modeling_target_region_%26_sgRNA.png" width="700" alt="demonstrate-sequencing-ATCG">
+
              expressed in human melanomas. The CRISPR/CAS9 system is only activated in cancer cells, no any effects on normal cells.</p>
 
           </div>
 
           </div>
 +
        </div>
 +
        <br/><br/><br/>
  
<p>Fig.3 The sgRNA for targeting mutant BRAf in melanoma cells</p>
 
  
          <br/><br/>
 
          <p>After setting the sgRNA sequence, we searched for the potential off-target locus. The potential off-target locus must meet the following conditions: 1) Having a PAM sequence (‘NGG’, ‘NAG’, ‘NCG’, or ‘NGA’) at 3’ end; 2) Base identities are more than 13 identified by <a href="https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM =blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome">MegaBLAST</a>; 3) CFD score is greater than 5%.</p>
 
  
 +
 +
 +
 +
 +
 +
 +
 +
        <!-- Part 2 -->
 +
        <div class="row">
 +
 +
          <div class="mainpage mainpage5">
 +
 +
            <h3 id="index_5">Drug Designing</h3>
 +
          </div>
 
         </div>
 
         </div>
  
  
 +
        <div class="row">
 +
 +
 +
          <div class="mainpage mainpage6">
 +
            <h5 id="index_6">Introduction</h5>
 +
            <p>At first, we intended to use liposome as genetic vector. However, experiment data shows that liposome (has blank plasmid in it) has a high cytotoxic effect. When the liposome concentration is 4μg/mL, the number of cells died from cytotoxic
 +
              effect is even greater than the number of survival cells (G361). Because the malignant degree of A375 is higher than G361, cytotoxic effect seems much weaker in A375.</p>
 +
            <div class="picture">
 +
              <img src="https://static.igem.org/mediawiki/2017/5/5b/SFLS_2017_Modeling_CFDscore.png" width="500">
 +
            </div>
 +
            <br/><br/>
 +
            <div class="picture">
 +
              <img src="https://static.igem.org/mediawiki/2017/5/5b/SFLS_2017_Modeling_CFDscore.png" width="500">
 +
            </div>
 +
            <br/><br/>
 +
 +
 +
 +
            <p>Therefore, we planned to use lentivirus as gene vector, which is reported to have lower cytotoxic effect and higher transduction efficiency than liposome vector. Lentiviruses enter into cells when transducing, while most kinds of viruses bind
 +
              to cellular membrane and inject their genetic material into cells.</p>
 +
            <div class="picture">
 +
              <img src="https://static.igem.org/mediawiki/2017/5/5b/SFLS_2017_Modeling_CFDscore.png" width="500">
 +
            </div>
 +
            <br/><br/>
 +
            <p>As the picture shown, the lentiviruses behave two ways in vivo: Diffusion and reaction (entering cells). The concentration of drug is a function of time (since injection of drug) and position (the distance to drug injection site).</p>
 +
            <div class="picture">
 +
              <img src="https://static.igem.org/mediawiki/2017/5/5b/SFLS_2017_Modeling_CFDscore.png" width="500">
 +
            </div>
 +
            <br/><br/>
  
      </div>
 
      <br/><br/><br/>
 
  
      <div class="row">
 
  
        <div class="mainpage mainpage3">
 
          <h5 id="index_3">RESULTS</h5>
 
          <p>Using Megablast, we find that over 500 alignments have potential off-target effects, and 62 of them have a PAM sequence (‘NGG’, ‘NAG’, ‘NCG’, or ‘NGA’). Seven of them are scored higher than 5% (Fig. 4). Since ‘NGG’ PAM has much higher efficiency of cleavage than ‘NAG’ (Fig.5)(3), the off-target probability of Seq 2, 3, 4, 5, 6 and 7 may be higher than its scores.</p>
 
          <div class="picture">
 
            <img src="https://static.igem.org/mediawiki/2017/d/df/SFLS_2017_Modeling_potential_off_target_region.png" width="700" alt="demonstrate-sequencing-ATCG">
 
 
           </div>
 
           </div>
 +
        </div>
 +
 +
 +
        <div class="row">
 +
 +
          <div class="mainpage mainpage7">
 +
            <h5 id="index_7">Diffusion part</h5>
 +
            <p>we assume that lentiviruses diffusing in extracellular substance is unsteady-state diffusion, which follows Fick’s Second Law:</p>
 +
            <div class="picture">
 +
              <img src="https://static.igem.org/mediawiki/2017/5/5b/SFLS_2017_Modeling_CFDscore.png" width="500" alt="demonstrate_fig.1">
 +
            </div>
 +
            <br/><br/>
 +
 +
            <p>C<sub>diff</sub> is the concentration of drug which participates diffusion ,C is the concentration of drug at certain time and position. t is time, D is the diffusion coefficient, &nabla;C is the concentration gradient of drug in vivo.
 +
              <p>In order to reduce the quantity of calculation, we consider the diffusion coefficient D is a constant, which does not change over time or space. Thus, the equation can be written as:</p>
 +
 +
 +
              <div class="picture">
 +
                <img src="https://static.igem.org/mediawiki/2017/b/b7/SFLS_2017_Modeling_Mismatch_types.png" width="700" alt="demonstrate_fig.2">
 +
              </div>
 +
              <br/><br/>
 +
 +
              <p>&Delta; is the Laplace operator.</p>
  
<p>Fig.4 Potential off-target sites of our sgRNA. PAM is marked in red. Compared with the sgRNA, the different bases are marked in yellow.</p>
 
          <br/><br/>
 
          <div class="picture">
 
            <img src="https://static.igem.org/mediawiki/2017/d/d2/SFLS_2017_Modeling_PAM.png" width="400" alt="demonstrate-sequencing-ATCG">
 
 
           </div>
 
           </div>
          <br/><br/>
 
  
 
         </div>
 
         </div>
 +
        <br/><br/><br/>
  
<p>Fig.5 Proportion of active sgRNAs with different PAM (Data derived from Doench 2016)</p>
 
  
  
 +
        <div class="row">
  
      </div>
+
          <div class="mainpage mainpage8">
      <br/><br/><br/>
+
            <h5 id="index_8">Reaction part</h5>
 +
            <p>We assume that at each moment, the number of lentiviruses entering into cells is proportional to the concentration of lentivirus at which time and position.</p>
 +
            <div class="picture">
 +
              <img src="https://static.igem.org/mediawiki/2017/5/5b/SFLS_2017_Modeling_CFDscore.png" width="500">
 +
            </div>
 +
            <br/><br/>
  
 +
            <p>C<sub>reac</sub> is the concentration of drug which participates the reaction,C is the concentration of drug at certain time and position, k is a constant.</p>
 +
            <p>Combining the two terms together, we have:</p>
  
      <div class="row">
 
  
  
        <div class="mainpage mainpage2" id="reference">
+
            <div class="picture">
          <h5 id="index_4">Conclusion</h5>
+
              <img src="https://static.igem.org/mediawiki/2017/b/b7/SFLS_2017_Modeling_Mismatch_types.png" width="700">
          <p>Our sgRNA sequence has high cleavage efficiency on the mutated BRAF gene, as well as a high risk of off-target effect. To avoid the off-target effect, we designed an artificial microRNA complementary to SAMMSON gene, which is specifically expressed in human melanomas. The CRISPR/CAS9 system is only activated in cancer cells, no any effects on normal cells.</p>
+
            </div>
 +
            <br/><br/>
 +
            <p>The partial differential equation has the following boundary conditions:</p>
 +
 
 +
            <div class="picture">
 +
              <img src="https://static.igem.org/mediawiki/2017/b/b7/SFLS_2017_Modeling_Mismatch_types.png" width="700">
 +
            </div>
 +
            <br/><br/>
 +
 
 +
 
 +
            <p>I means that at the moment of injection, the drug has not diffused or entered into cells, so the concentration at the injection site is the initial drug concentration C<sup>0</sup>.</p>
 +
            <p>II means that when drug gets to the border of the dermis and subcutaneous tissue (where the distance to injection site is &chi;<sub>c</sub>), it will be immediately taken away through the complex network of blood vessels.</p>
 +
 
 +
 
 +
          </div>
 +
 
 
         </div>
 
         </div>
      <br/><br/><br/>
+
        <br/><br/><br/>
  
<h5 id="index_4">References</h5>
 
<p>1. http://crispr.mit.edu/</p>
 
<p>2. Stemmer M, Thumberger T, del Sol Keyer M, et al. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLOS ONE, 2015, 10(4): e0124633.</p>
 
<p>3. Doench JG, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, 2016, 34(2): 184-191.</p>
 
  
  
 +
        <div class="row">
  
 +
 +
          <div class="mainpage mainpage9">
 +
            <h5 id="index_9">Future work</h5>
 +
            <p>Due to the limited time, we could not realize our genetic circuit into drugs. We also failed to find data from the existing articles with which the values of parameters can be perfectly determined.</p>
 +
            <p>After determining the parameters, we can know the concentration at any time and position, when the initial concentration is set.</p>
 +
          </div>
 +
 +
 +
 +
        </div>
 +
        <br/><br/><br/>
 +
 +
 +
 +
 +
 +
        <div class="row">
 +
 +
 +
          <div class="mainpage mainpage2" id="reference">
 +
            <h5>References</h5>
 +
            <li>http://crispr.mit.edu/</li>
 +
            <li>Stemmer M, Thumberger T, del Sol Keyer M, et al. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLOS ONE, 2015, 10(4): e0124633.</li>
 +
            <li>Doench JG, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, 2016, 34(2): 184-191.</li>
 +
 +
 +
 +
          </div>
 +
 +
        </div>
 
       </div>
 
       </div>
  
 
     </div>
 
     </div>
  </div>
 
  
</div>
 
  
  
  
  
 
+
    <div class="gototop js-top">
  <div class="gototop js-top">
+
      <a href="javascript:void(0)" class="js-gotop"><i class="icon-arrow-up"></i></a>
    <a href="javascript:void(0)" class="js-gotop"><i class="icon-arrow-up"></i></a>
+
    </div>
  </div>
+
  
 
</body>
 
</body>

Revision as of 16:10, 1 November 2017

Team:Shenzhen SFLS/Demonstrate - 2017.igem.org

Team:Shenzhen SFLS/Demonstrate - 2017.igem.org

Modeling

Prediction of Off-target Effect

INTRODUCTION

Since the CRISPR/Cas9 system wasfirstly used in genetic engineering, the researches on its off-target effects have never stopped. The methods of Hsu-Zhang scoring (1) and CCTop (2) are two widely used algorithms for designing a single guide RNA (sgRNA) sequence and finding potential off-target locus. Last year, a new algorithm named CFD (Cutting Frequency Determination) scoring method was developed to evaluate potential off-target sits with 240 parameters (Fig. 1) (3). All of these three methods (Hsu-Zhang scoring, CCTop, and CFD) take into consideration different weight coefficients of different mismatch position, however, only CFD scoring method considers mismatch types as a factor as well.

demonstrate_fig.1


demonstrate_fig.2


Fig.1 The values of CFD scores change over mismatch positions and types (Data derived from Doench 2016). Mismatch position is counted from 5’ end of gene, position 20 represent the nucleotide nearest to protospacer adjacent motif (PAM), and position 1 represent the nucleotide furthest from PAM.




Methods

We chose to use CFD scoring method instead of Hsu-Zhang scoring or CCTop for the following reasons: Firstly, it is reported that the CFD method has higher Pearson correlation (3), compared with Hsu-Zhang scoring method and CCTop, especially when the number of mismatched bases is large; Secondly, Computing the scores by using CFD method is much easier than the other two methods.

In order to obtain the CFD score of a certain DNA locus, we multiply all the scores of single base mismatch together. If the DNA loci and sgRNA has mismatched bases at position α, β, γ… with mismatch type rA-dC, rC-dC, rU-dT…(Fig. 1B), its CFD score is calculated as:

demonstrate-sequencing


It is reported that about 60% of melanomas contain a mutation in the v-raf murine sarcoma viral oncogene homolog B (BRAF), and V600E (1799T> A) variation (Fig. 2) in BRAF is the main type of mutations in the cancer tissues, which plays a critical role in carcinogenesis of melanoma.

demonstrate-sequencing-ATCG

Fig. 2 The graphic of BRAF 1799T>A (V600E) mutation



In our project, we try to disrupt the mutant BRAF in the two melanoma cell lines (A375 and G361) by CRISPR/Cas9 technology. A typical PAM is ‘NGG’. However, we didn’t find it. It has been reported that alternative PAM sequence ‘NAG’ has rather high cleavage efficiency while ‘NTG’ shows no tendency of cutting (3). To meet the goal of specifical cleavage, we arranged the mutant base on the three PAM bases as shown in Fig 3.

demonstrate-sequencing-ATCG

Fig.3 The sgRNA for targeting mutant BRAf in melanoma cells



After setting the sgRNA sequence, we searched for the potential off-target locus. The potential off-target locus must meet the following conditions: 1) Having a PAM sequence (‘NGG’, ‘NAG’, ‘NCG’, or ‘NGA’) at 3’ end; 2) Base identities are more than 13 identified by MegaBLAST; 3) CFD score is greater than 5%.




RESULTS

Using Megablast, we find that over 500 alignments have potential off-target effects, and 62 of them have a PAM sequence (‘NGG’, ‘NAG’, ‘NCG’, or ‘NGA’). Seven of them are scored higher than 5% (Fig. 4). Since ‘NGG’ PAM has much higher efficiency of cleavage than ‘NAG’ (Fig.5)(3), the off-target probability of Seq 2, 3, 4, 5, 6 and 7 may be higher than its scores.

demonstrate-sequencing-ATCG

Fig.4 Potential off-target sites of our sgRNA. PAM is marked in red. Compared with the sgRNA, the different bases are marked in yellow.



demonstrate-sequencing-ATCG


Fig.5 Proportion of active sgRNAs with different PAM (Data derived from Doench 2016)




Conclusion

Our sgRNA sequence has high cleavage efficiency on the mutated BRAF gene, as well as a high risk of off-target effect. To avoid the off-target effect, we designed an artificial microRNA complementary to SAMMSON gene, which is specifically expressed in human melanomas. The CRISPR/CAS9 system is only activated in cancer cells, no any effects on normal cells.




Drug Designing

Introduction

At first, we intended to use liposome as genetic vector. However, experiment data shows that liposome (has blank plasmid in it) has a high cytotoxic effect. When the liposome concentration is 4μg/mL, the number of cells died from cytotoxic effect is even greater than the number of survival cells (G361). Because the malignant degree of A375 is higher than G361, cytotoxic effect seems much weaker in A375.





Therefore, we planned to use lentivirus as gene vector, which is reported to have lower cytotoxic effect and higher transduction efficiency than liposome vector. Lentiviruses enter into cells when transducing, while most kinds of viruses bind to cellular membrane and inject their genetic material into cells.



As the picture shown, the lentiviruses behave two ways in vivo: Diffusion and reaction (entering cells). The concentration of drug is a function of time (since injection of drug) and position (the distance to drug injection site).



Diffusion part

we assume that lentiviruses diffusing in extracellular substance is unsteady-state diffusion, which follows Fick’s Second Law:

demonstrate_fig.1


Cdiff is the concentration of drug which participates diffusion ,C is the concentration of drug at certain time and position. t is time, D is the diffusion coefficient, ∇C is the concentration gradient of drug in vivo.

In order to reduce the quantity of calculation, we consider the diffusion coefficient D is a constant, which does not change over time or space. Thus, the equation can be written as:

demonstrate_fig.2


Δ is the Laplace operator.




Reaction part

We assume that at each moment, the number of lentiviruses entering into cells is proportional to the concentration of lentivirus at which time and position.



Creac is the concentration of drug which participates the reaction,C is the concentration of drug at certain time and position, k is a constant.

Combining the two terms together, we have:



The partial differential equation has the following boundary conditions:



I means that at the moment of injection, the drug has not diffused or entered into cells, so the concentration at the injection site is the initial drug concentration C0.

II means that when drug gets to the border of the dermis and subcutaneous tissue (where the distance to injection site is χc), it will be immediately taken away through the complex network of blood vessels.




Future work

Due to the limited time, we could not realize our genetic circuit into drugs. We also failed to find data from the existing articles with which the values of parameters can be perfectly determined.

After determining the parameters, we can know the concentration at any time and position, when the initial concentration is set.




References
  • http://crispr.mit.edu/
  • Stemmer M, Thumberger T, del Sol Keyer M, et al. CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLOS ONE, 2015, 10(4): e0124633.
  • Doench JG, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, 2016, 34(2): 184-191.
  •