Difference between revisions of "Team:Newcastle/Results"

Line 585: Line 585:
 
Due to time constraints, we also lacked the time to characterise these parts into the Sensynova platform within the lab.
 
Due to time constraints, we also lacked the time to characterise these parts into the Sensynova platform within the lab.
 
</p>
 
</p>
 
+
</br>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> References </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> References </h2>
 
</br>
 
</br>
Line 885: Line 885:
 
<br />
 
<br />
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Rationale and Aim </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Rationale and Aim </h2>
 +
</br>
 
<p>
 
<p>
 
Sensynova multicellular biosensor platform has been developed to overcome the limitations that hamper success in biosensor development. One of these limits regards the lack of modularity and reusability of the various components. Our platform design, based on the expression of three main modules (Detector, Processor and Reporter) by three <i>E.coli</i> strains in co-culture, allows the switch of possible variances for each module and the production of multiple customised biosensors.
 
Sensynova multicellular biosensor platform has been developed to overcome the limitations that hamper success in biosensor development. One of these limits regards the lack of modularity and reusability of the various components. Our platform design, based on the expression of three main modules (Detector, Processor and Reporter) by three <i>E.coli</i> strains in co-culture, allows the switch of possible variances for each module and the production of multiple customised biosensors.
Line 893: Line 894:
 
</p>
 
</p>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Background Information </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Background Information </h2>
 +
</br>
 
           <p>Expression of the <i>E. coli</i> type 1 fimbriae gene is tightly regulated and phase dependent, i.e expression is either completely [ON] or [OFF] (Klemm, 1986). This change in expression is controlled by the action of two proteins FimB and FimE which independently act upon a 300bp promoter region upstream of the fimbriae gene.  The 300bp promoter region is inverted to either activate or suppress expression (McClain <i>et al</i>., 1991). Typical gene regulation mechanisms rely on up or down regulation of a promoter from a baseline expression, the fimbriae mechanism of ‘ALL’ or ‘NONE’ makes it a useful tool for synthetic biology applications.  While the FimB protein inverts the promoter back and forth between [ON] and [OFF] states the FimE protein permanently inverts the promoter from [ON] to [OFF].  This inversion can be used to amplify weak or inconsistent induction signals.<br/><br/>
 
           <p>Expression of the <i>E. coli</i> type 1 fimbriae gene is tightly regulated and phase dependent, i.e expression is either completely [ON] or [OFF] (Klemm, 1986). This change in expression is controlled by the action of two proteins FimB and FimE which independently act upon a 300bp promoter region upstream of the fimbriae gene.  The 300bp promoter region is inverted to either activate or suppress expression (McClain <i>et al</i>., 1991). Typical gene regulation mechanisms rely on up or down regulation of a promoter from a baseline expression, the fimbriae mechanism of ‘ALL’ or ‘NONE’ makes it a useful tool for synthetic biology applications.  While the FimB protein inverts the promoter back and forth between [ON] and [OFF] states the FimE protein permanently inverts the promoter from [ON] to [OFF].  This inversion can be used to amplify weak or inconsistent induction signals.<br/><br/>
 
Since the part we are making is designed to amplify a weak signal which can then be detected by a downstream ‘reporter’ cell the quorum sensing system from <i>P. aeruginosa</i> was adapted to allow for signal transfer between cells.  The <i>rhlI</i> gene from <i>P. aeruginosa</i> produces the quorum sensing molecule N-butyryl-AHL (C4-AHL) (Parsek <i>et al</i>.,2000) (<a href="http://parts.igem.org/Part:BBa_J64718">J64718</a>),  this molecule is membrane permeable and able to induce expression of a promoter upstream of sfGFP in another cell (<a href="http://parts.igem.org/Part:BBa_K2205015">K2205015</a>).<br/><br/>
 
Since the part we are making is designed to amplify a weak signal which can then be detected by a downstream ‘reporter’ cell the quorum sensing system from <i>P. aeruginosa</i> was adapted to allow for signal transfer between cells.  The <i>rhlI</i> gene from <i>P. aeruginosa</i> produces the quorum sensing molecule N-butyryl-AHL (C4-AHL) (Parsek <i>et al</i>.,2000) (<a href="http://parts.igem.org/Part:BBa_J64718">J64718</a>),  this molecule is membrane permeable and able to induce expression of a promoter upstream of sfGFP in another cell (<a href="http://parts.igem.org/Part:BBa_K2205015">K2205015</a>).<br/><br/>
Line 903: Line 905:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 +
</br>
 
           <p>To construct the Fim reporter switch 3 separate gBlocks were designed with overlapping adaptor regions homologous to the iGEM prefix and suffix to allow for Gibson assembly into the pSB1C3 backbone whilst retaining biobrick compatibility.  The individual genes and other components are shown in (Table 1).  The 1st gBlock sequence starts with a RBS (<a href="http://parts.igem.org/Part:BBa_B0034">B0034</a>) upstream of the <i>fimE</i> ORF (<a href="http://parts.igem.org/Part:BBa_K137007">K137007</a>) with no promoter region, this is to allow for other promoters to be cloned in upstream of the part.  Downstream of the <i>fimE</i> gene is a double terminator (<a href="http://parts.igem.org/Part:BBa_B0015">B0015</a>).  All RBS and terminator sequences used are B0034 and B0015 respectively.  The switching mechanism consists of the Fim promoter sequence (<a href="http://parts.igem.org/Part:BBa_K1632004">K1632004</a>) flanked by two RBS-ORF-Terminator sequences.  While in the native [OFF] state the Fim promoter drives expression of eforRed (<a href="http://parts.igem.org/Part:BBa_K592012">K592012</a>) and when flipped to the [ON] state drives expression of <i>rhlI</i> (<a href="http://parts.igem.org/Part:BBa_J64718)">J64718)</a>.  The rationale behind using the <i>fimE</i> gene instead of<i>fimB</i> is that it permanently inverts the promoter region meaning weak induction signals can be amplified by the Fim switch. <br/><br/>
 
           <p>To construct the Fim reporter switch 3 separate gBlocks were designed with overlapping adaptor regions homologous to the iGEM prefix and suffix to allow for Gibson assembly into the pSB1C3 backbone whilst retaining biobrick compatibility.  The individual genes and other components are shown in (Table 1).  The 1st gBlock sequence starts with a RBS (<a href="http://parts.igem.org/Part:BBa_B0034">B0034</a>) upstream of the <i>fimE</i> ORF (<a href="http://parts.igem.org/Part:BBa_K137007">K137007</a>) with no promoter region, this is to allow for other promoters to be cloned in upstream of the part.  Downstream of the <i>fimE</i> gene is a double terminator (<a href="http://parts.igem.org/Part:BBa_B0015">B0015</a>).  All RBS and terminator sequences used are B0034 and B0015 respectively.  The switching mechanism consists of the Fim promoter sequence (<a href="http://parts.igem.org/Part:BBa_K1632004">K1632004</a>) flanked by two RBS-ORF-Terminator sequences.  While in the native [OFF] state the Fim promoter drives expression of eforRed (<a href="http://parts.igem.org/Part:BBa_K592012">K592012</a>) and when flipped to the [ON] state drives expression of <i>rhlI</i> (<a href="http://parts.igem.org/Part:BBa_J64718)">J64718)</a>.  The rationale behind using the <i>fimE</i> gene instead of<i>fimB</i> is that it permanently inverts the promoter region meaning weak induction signals can be amplified by the Fim switch. <br/><br/>
 
<center><b>Table 1:</b> Table of parts used for constructing the Fim Switch.<br/></center>
 
<center><b>Table 1:</b> Table of parts used for constructing the Fim Switch.<br/></center>
Line 909: Line 912:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Implementation </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Implementation </h2>
 +
</br>
 
           <p>To assemble the Fim switch part the isothermal Gibson assembly cloning method was chosen as it would significantly shorten the time taken to assemble 3 separate sequences compared to traditional cloning methods.  The 3 gBlock DNA fragments shown in (Table 1) were amplified by high fidelity Q5 PCR and the pSB1C3 backbone was digested with restriction enzymes EcoRI and PstI. <br/><br/>
 
           <p>To assemble the Fim switch part the isothermal Gibson assembly cloning method was chosen as it would significantly shorten the time taken to assemble 3 separate sequences compared to traditional cloning methods.  The 3 gBlock DNA fragments shown in (Table 1) were amplified by high fidelity Q5 PCR and the pSB1C3 backbone was digested with restriction enzymes EcoRI and PstI. <br/><br/>
 
<img class="FIM" style="width:100%" src="https://static.igem.org/mediawiki/2017/d/d8/--T--Newcastle_amplify_G_Fim.png"/>
 
<img class="FIM" style="width:100%" src="https://static.igem.org/mediawiki/2017/d/d8/--T--Newcastle_amplify_G_Fim.png"/>
Line 936: Line 940:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Characterisation </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Characterisation </h2>
 +
</br>
 
           <p>
 
           <p>
 
To test the functionality of the Fim switch, ensuring that C4 AHL is produced, the strain was cultured with a reporter strain (<a href="http://parts.igem.org/Part:BBa_K2205015">K2205015</a>) which produces GFP in response to the quorum sensing molecule C4 AHL.  Due to a small sub-population of the Fim switch strain being white, a single white colony was picked and cultured separately.  This strain was used as a positive control as it should produce C4 AHL.  Both the majority (red) Fim switch strains and minority flipped (white) Fim switch strains were tested for C4 AHL production by co-culture with the reporter strain.  Initially the Fim switch strains were spotted onto a lawn of the reporter strain (Figure 5) followed by quantitative analysis of the strains by co-culture in a 96 well microplate (Figure 6).
 
To test the functionality of the Fim switch, ensuring that C4 AHL is produced, the strain was cultured with a reporter strain (<a href="http://parts.igem.org/Part:BBa_K2205015">K2205015</a>) which produces GFP in response to the quorum sensing molecule C4 AHL.  Due to a small sub-population of the Fim switch strain being white, a single white colony was picked and cultured separately.  This strain was used as a positive control as it should produce C4 AHL.  Both the majority (red) Fim switch strains and minority flipped (white) Fim switch strains were tested for C4 AHL production by co-culture with the reporter strain.  Initially the Fim switch strains were spotted onto a lawn of the reporter strain (Figure 5) followed by quantitative analysis of the strains by co-culture in a 96 well microplate (Figure 6).
Line 954: Line 959:
  
 
           <h2 style="text-align: left; clear: both"> Conclusions</h2>
 
           <h2 style="text-align: left; clear: both"> Conclusions</h2>
 +
</br>
 
<p>
 
<p>
 
The aim of the Fim switch part was to make a processor module which can be visually inspected for functionality.  The Fim switch has been shown to expresses the eforRed chromoprotein under normal (uninduced) conditions which allows the user to both determine that the strain is alive and has maintained the Fim switch plasmid.  Following induction, the Fim promoter flips direction and begins expressing RhlI which synthesises the C4-AHL quorum sensing molecule.  This has been shown to successfully induce expression of sfGFP in the reporter strain (<a href="http://parts.igem.org/Part:BBa_K2205015">BBa_K2205015</a>).<br/><br/>
 
The aim of the Fim switch part was to make a processor module which can be visually inspected for functionality.  The Fim switch has been shown to expresses the eforRed chromoprotein under normal (uninduced) conditions which allows the user to both determine that the strain is alive and has maintained the Fim switch plasmid.  Following induction, the Fim promoter flips direction and begins expressing RhlI which synthesises the C4-AHL quorum sensing molecule.  This has been shown to successfully induce expression of sfGFP in the reporter strain (<a href="http://parts.igem.org/Part:BBa_K2205015">BBa_K2205015</a>).<br/><br/>

Revision as of 17:08, 1 November 2017

spacefill

Our Experimental Results


Below is a diagram of our Sensynova Framework. Clicking on each part of the framework (e.g. detector modules) links to the relevant results.

Alternatively, at the bottom of this page are tabs which will show you results for every part of the project



Framework

Framework Chassis

Biochemical Adaptor

Target

Detector Modules

Multicellular Framework Testing

C12 HSL: Connector 1

Processor Modules

Framework in Cell Free Protein Synthesis Systems

C4 HSL: Connector 2

Reporter Modules



Looking for Interlab Study
related results? Click below!