Difference between revisions of "Team:Calgary/imposter"

Line 12: Line 12:
 
<div id="OneCol"><img src="https://static.igem.org/mediawiki/2017/7/73/Calgary2017_MainGraphic2.png"  /></div>
 
<div id="OneCol"><img src="https://static.igem.org/mediawiki/2017/7/73/Calgary2017_MainGraphic2.png"  /></div>
  
<p>Lorem ipsum dolor sit amet, eu neque ultricies sem primis id dignissim. Et vitae pellentesque enim varius, ligula nascetur sem laoreet eget, luctus quis vitae hendrerit, ut tincidunt ac eget lobortis lorem. Eros purus metus, commodi rutrum vulputate sed, dui odio neque tellus. Adipiscing cursus nisl sit faucibus dolor, pede suspendisse enim, at amet sodales cras vestibulum proin id, libero facilisis faucibus bibendum nonummy enim. Vestibulum eget torquent commodo faucibus. Quis scelerisque ipsum integer, faucibus lacus, convallis eros nunc in justo, ac a libero diam a amet leo, aenean nonummy. Vivamus in, per congue, molestie fringilla nibh ut rutrum leo vestibulum, risus vitae sit cras etiam leo, egestas exercitationem mi ipsum. Nunc quam vitae elit vitae libero, integer libero velit, in sit felis cursus. Tincidunt amet orci etiam nam, nec ultricies, ipsum porta sed, rerum leo sit ut, est magna. Vulputate ut nostra quis tortor, sit metus nec aliquam nec eros per, libero vivamus turpis elit. Feugiat dolor ligula integer interdum mattis, dignissim felis ullamcorper. Nonummy vel orci pede hac, euismod pellentesque eget vitae neque. Volutpat consequat tristique sapien. </p>
+
<p>Poly(3-hydroxybutyrate) (PHB) is a linear polyester and is a product of bacterial fermentation of some sugars or lipids (Anjum, 2016). PHB is used by bacteria (such as Ralstonia eutropha and Pseudomonas aeruginosa) (Anderson, 1990) as carbon and energy storage3. PHB is one preferred alternative to petroleum-based plastics due to its biodegradability (Tsuge, 2003) and the potential for more environmentally friendly manufacturing processes. Current PHB production processes are costly; this limits industrial scale use and application of PHB1. We aim to eliminate the cost of using lipid or sugar feedstocks in PHB-production facilities by using human solid waste as a feedstock. We have engineered recombinant Escherichia coli to utilize genes from native PHB-producing bacteria. These genes code for enzymes in the glycolysis and fatty acid beta-oxidation pathways (which break down sugars and lipids, respectively), and in PHB production. We thus hope to optimize PHB production by improving yields and cutting costs, which would promote the use of PHB in industry. This process could also improve the management of human waste by producing a value-added product.
 +
</p>
  
<div class="tiles">
+
<p>To learn about how the plastic is produced, please visit our <a href="2017.igem.org/Team:Calgary/Synthesis">Synthesis</a> page.</p>
<div class="wrapper">
+
<p>To learn about the secretion method we are developing to transport the plastic outside the cell, visit the <a href="2017.igem.org/Team:Calgary/Secretion">Secretion</a> page!</p>
<div class="box foo">
+
<p>To discover the engineering processes implemented throughout the whole system, visit the <a href="2017.igem.org/Team:Calgary/Process">Process</a> page.</p>
<a href="https://2017.igem.org/Team:Calgary/Synthesis"><img src="https://static.igem.org/mediawiki/2017/4/43/Calgary2017_SynthesisTile.png"> </a>
+
<p>To see all the experts who we have consulted to make this project a reality, visit our <a href="2017.igem.org/Team:Calgary/Human_Practices">Human Practices</a> page.</p>
</div>
+
<div class="box foo">
+
<a href="https://2017.igem.org/Team:Calgary/Secretion"><img src="https://static.igem.org/mediawiki/2017/5/5c/Calgary2017_SecretionTile.png"> </a>
+
</div>
+
<div class="box foo">
+
<a href="https://2017.igem.org/Team:Calgary/Process"><img src="https://static.igem.org/mediawiki/2017/7/7e/Calgary2017_ProcessTile.png"> </a>
+
</div>  
+
<div class="box foo">
+
<a href="https://2017.igem.org/Team:Calgary/Human_Practices"><img src="https://static.igem.org/mediawiki/2017/f/f5/Calgary2017_HPTile.png"> </a>
+
</div>
+
</div>
+
</div>
+
  
 +
<div id="OneCol"><img src="https://static.igem.org/mediawiki/2017/7/71/Calgary2017_MainGraphic3.png"  /></div>
  
<p>Lorem ipsum dolor sit amet, eu neque ultricies sem primis id dignissim. Et vitae pellentesque enim varius, ligula nascetur sem laoreet eget, luctus quis vitae hendrerit, ut tincidunt ac eget lobortis lorem. Eros purus metus, commodi rutrum vulputate sed, dui odio neque tellus. Adipiscing cursus nisl sit faucibus dolor, pede suspendisse enim, at amet sodales cras vestibulum proin id, libero facilisis faucibus bibendum nonummy enim. Vestibulum eget torquent commodo faucibus. Quis scelerisque ipsum integer, faucibus lacus, convallis eros nunc in justo, ac a libero diam a amet leo, aenean nonummy. Vivamus in, per congue, molestie fringilla nibh ut rutrum leo vestibulum, risus vitae sit cras etiam leo, egestas exercitationem mi ipsum. Nunc quam vitae elit vitae libero, integer libero velit, in sit felis cursus. Tincidunt amet orci etiam nam, nec ultricies, ipsum porta sed, rerum leo sit ut, est magna. Vulputate ut nostra quis tortor, sit metus nec aliquam nec eros per, libero vivamus turpis elit. Feugiat dolor ligula integer interdum mattis, dignissim felis ullamcorper. Nonummy vel orci pede hac, euismod pellentesque eget vitae neque. Volutpat consequat tristique sapien. </p>
+
<div id="OneCol"><img src="https://static.igem.org/mediawiki/2017/b/b5/Calgary2017_MainGraphic4.png" /></div>
  
  
<div id="OneCol"><img src="https://static.igem.org/mediawiki/2017/7/71/Calgary2017_MainGraphic3.png"  /></div>
+
</html>
 +
|REFERENCES=
 +
<html>
 +
<h2>Works Cited</h2>
 +
<p>Anjum, A., Zuber, M., Zia, K.M., Noreen, A., Anjum, M.N. & Tabassum, S. (2016). Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int J Biol Macromol., 89: 161-74</p>
 +
<p>Anderson, A. & Dawes, E. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev., 54(4): 450-472.</p>
 +
<p>Tsuge, T., Taguchi, K., Seiichi, T. & Doi, Y. (2003). Molecular characterization and properties of (R)-specific enoyl-CoA hydratases from Pseudomonas aeruginosa: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid ß-oxidation. Int J of Biol Macromol., 31(4–5): 195–205.</p>
 +
 
 +
<!-- If you want to included references, please include a heading (h2) titles "Works Cited" followed by all your references in separate paragraph tags -->
 +
 
 +
</html>
 +
}}
 +
 
  
<div id="OneCol"><img src="https://static.igem.org/mediawiki/2017/b/b5/Calgary2017_MainGraphic4.png" /></div>
 
  
 
</html>
 
</html>
Line 124: Line 125:
 
.box:hover::after, .box:hover::before {
 
.box:hover::after, .box:hover::before {
 
   -webkit-transform: scale(1);
 
   -webkit-transform: scale(1);
}
 
 
p{
 
margin: 2rem;
 
 
}
 
}
  

Revision as of 01:38, 16 October 2017

Header

Governments and private enterprises alike are gearing up for travel across the Solar System. Plans to colonize nearby planets are underway, with Elon Musk spearheading the initiative to put a human colony on Mars by 2030. In a parallel vein, NASA is planning a manned exploratory mission to Mars as soon as the 2030s. Several other space agencies have similar plans and timelines for their own respective Mars explorations. This exciting time in our history nonetheless comes with the challenges of long-term space travel. Two ecological and economical challenges arise: the sustainable management of waste produced on a spaceship and the high cost of shipping materials to space.

This year, our project involves using genetically engineered E. coli to turn human waste into bioplastics. We envision our project as a start-to-finish integrated system that can be used in space to generate items useful to astronauts during early Mars missions. This will solve the problem of waste management by upcycling solid human waste into a usable product. It will also reduce astronautical costs, as fuel typically used to ship materials to space can be saved.

Poly(3-hydroxybutyrate) (PHB) is a linear polyester and is a product of bacterial fermentation of some sugars or lipids (Anjum, 2016). PHB is used by bacteria (such as Ralstonia eutropha and Pseudomonas aeruginosa) (Anderson, 1990) as carbon and energy storage3. PHB is one preferred alternative to petroleum-based plastics due to its biodegradability (Tsuge, 2003) and the potential for more environmentally friendly manufacturing processes. Current PHB production processes are costly; this limits industrial scale use and application of PHB1. We aim to eliminate the cost of using lipid or sugar feedstocks in PHB-production facilities by using human solid waste as a feedstock. We have engineered recombinant Escherichia coli to utilize genes from native PHB-producing bacteria. These genes code for enzymes in the glycolysis and fatty acid beta-oxidation pathways (which break down sugars and lipids, respectively), and in PHB production. We thus hope to optimize PHB production by improving yields and cutting costs, which would promote the use of PHB in industry. This process could also improve the management of human waste by producing a value-added product.

To learn about how the plastic is produced, please visit our Synthesis page.

To learn about the secretion method we are developing to transport the plastic outside the cell, visit the Secretion page!

To discover the engineering processes implemented throughout the whole system, visit the Process page.

To see all the experts who we have consulted to make this project a reality, visit our Human Practices page.


</html> }}