Difference between revisions of "Team:Franconia"

(Prototype team page)
 
 
(35 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
{{Franconia}}
 
{{Franconia}}
 
<html>
 
<html>
 +
<style>
  
 +
.banner-heading > h3 {
 +
color: white !important;
 +
}
  
<div class="column full_size" >
+
/* Turn off parallax scrolling for tablets and phones. Increase/decrease the pixels if needed */
<img src="http://placehold.it/2000x300/d3d3d3/f2f2f2">
+
@media (max-width: 1024px) {
</div>
+
.banner {
 +
background-attachment: scroll;
 +
}
  
 +
.banner h1 {
 +
font-size: 180%;
 +
font-weight: 100;
 +
}
 +
}
  
 +
.light {
 +
text-align: center;
 +
}
  
<div class="column full_size" >
+
#headervideo {
<h1> Welcome to iGEM 2017! </h1>
+
opacity: 0.3;
<p>Your team has been approved and you are ready to start the iGEM season! </p>
+
object-fit: fill;
</div>
+
}
  
<div class="clear"></div>
+
.banner {
 +
height: initial !important;
  
<div class="column half_size" >
+
}
<h5>Before you start: </h5>
+
<p> Please read the following pages:</p>
+
<ul>
+
<li>  <a href="https://2017.igem.org/Competition">Competition Hub</a> </li>
+
<li> <a href="https://2017.igem.org/Competition/Deliverables/Wiki">Wiki Requirements page</a></li>
+
<li> <a href="https://2017.igem.org/Resources/Template_Documentation">Template documentation</a></li>
+
</ul>
+
</div>
+
  
<div class="column half_size" >
+
.banner-button {
<div class="highlight">
+
color: white;
<h5> Styling your wiki </h5>
+
margin-top: 30px;
<p>You may style this page as you like or you can simply leave the style as it is. You can easily keep the styling and edit the content of these default wiki pages with your project information and completely fulfill the requirement to document your project.</p>
+
cursor: pointer;
<p>While you may not win Best Wiki with this styling, your team is still eligible for all other awards. This default wiki meets the requirements, it improves navigability and ease of use for visitors, and you should not feel it is necessary to style beyond what has been provided.</p>
+
padding: 15px;
</div>
+
border: 1px solid white;
</div>
+
border-radius: 10px;
 +
display: inline-block;
 +
font-size: larger;
 +
font-weight: 500;
 +
}
  
<div class="column full_size" >
+
@media (max-width: 768px) {
<h5> Wiki template information </h5>
+
.banner-heading h3 {
<p>We have created these wiki template pages to help you get started and to help you think about how your team will be evaluated. You can find a list of all the pages tied to awards here at the <a href="https://2017.igem.org/Judging/Pages_for_Awards">Pages for awards</a> link. You must edit these pages to be evaluated for medals and awards, but ultimately the design, layout, style and all other elements of your team wiki is up to you!</p>
+
font-size: x-large;
 +
}
 +
}
  
</div>
+
@media (max-width: 1024px) {
 +
#headervideo {
 +
display: none !important;
 +
}
  
 +
.banner {
 +
background-image: url("https://static.igem.org/mediawiki/2017/thumb/a/a0/T--Franconia--Home-DNAImage.png/1600px-T--Franconia--Home-DNAImage.png");
 +
height: 65vh !important;
 +
box-shadow: inset 0 0 0 2000px rgba(50, 71, 85, 0.7);
 +
top: -3px;
 +
width: 100vw;
 +
background-color: var(--tint-color);
 +
background-attachment: fixed;
 +
background-position: center;
 +
background-repeat: no-repeat;
 +
background-size: cover;
  
 +
}
  
 +
                .banner .banner-heading h1, .banner h3, .banner-button {
 +
                        margin-top: 0 !important;
 +
                }
 +
}
  
<div class="column half_size" >
+
      @media screen and (max-width:767px) {
<h5> Editing your wiki </h5>
+
             
<p>On this page you can document your project, introduce your team members, document your progress and share your iGEM experience with the rest of the world! </p>
+
              .banner .banner-heading, .banner h3, .banner-button {
<p> <a href="https://2017.igem.org/wiki/index.php?title=Team:Example&action=edit"> </a>Use WikiTools - Edit in the black menu bar to edit this page</p>
+
                  font-size: 100%;
 +
                  margin-top: 0 !important;
 +
                  top: 90px !important;
 +
              }
  
</div>
+
              .content {
 +
                  margin-top: 20% !important;
 +
              }
 +
      }
  
 +
    .center.home {
 +
        margin-bottom: 5%;
 +
    }
  
<div class="column half_size" >
+
    .center.home > div > a > div > img {
<h5>Tips</h5>
+
        margin-bottom: 10%;
<p>This wiki will be your team’s first interaction with the rest of the world, so here are a few tips to help you get started: </p>
+
        border-radius: 10% 100% 100% 100%;
<ul>
+
        border: 2px solid var(--tint-color);
<li>State your accomplishments! Tell people what you have achieved from the start. </li>
+
    }
<li>Be clear about what you are doing and how you plan to do this.</li>
+
<li>You have a global audience! Consider the different backgrounds that your users come from.</li>
+
<li>Make sure information is easy to find; nothing should be more than 3 clicks away.  </li>
+
<li>Avoid using very small fonts and low contrast colors; information should be easy to read.  </li>
+
<li>Start documenting your project as early as possible; don’t leave anything to the last minute before the Wiki Freeze. For a complete list of deadlines visit the <a href="https://2017.igem.org/Calendar">iGEM 2017 calendar</a> </li>
+
<li>Have lots of fun! </li>
+
</ul>
+
</div>
+
  
 +
    .center.home > div > a > div > h4 {
 +
        font-weight: 300 !important;
 +
    }
  
<div class="column half_size" >
+
    @media screen and (max-width:767px) {
<h5>Inspiration</h5>
+
        .col-sm-3.lastStep {
<p> You can also view other team wikis for inspiration! Here are some examples:</p>
+
            margin-bottom: 30% !important;
<ul>
+
        }
<li> <a href="https://2014.igem.org/Team:SDU-Denmark/"> 2014 SDU Denmark </a> </li>
+
    }
<li> <a href="https://2014.igem.org/Team:Aalto-Helsinki">2014 Aalto-Helsinki</a> </li>
+
<li> <a href="https://2014.igem.org/Team:LMU-Munich">2014 LMU-Munich</a> </li>
+
<li> <a href="https://2014.igem.org/Team:Michigan"> 2014 Michigan</a></li>
+
<li> <a href="https://2014.igem.org/Team:ITESM-Guadalajara">2014 ITESM-Guadalajara </a></li>
+
<li> <a href="https://2014.igem.org/Team:SCU-China"> 2014 SCU-China </a></li>
+
</ul>
+
</div>
+
  
<div class="column half_size" >
+
    .banner .banner-heading {
<h5> Uploading pictures and files </h5>
+
     
<p> You can upload your pictures and files to the iGEM 2017 server. Remember to keep all your pictures and files within your team's namespace or at least include your team's name in the file name. <br />
+
          top: 100px;
When you upload, set the "Destination Filename" to <br><code>T--YourOfficialTeamName--NameOfFile.jpg</code>. (If you don't do this, someone else might upload a different file with the same "Destination Filename", and your file would be erased!)<br><br>
+
    }
  
<a href="https://2017.igem.org/Special:Upload">
 
UPLOAD FILES
 
</a>
 
</p>
 
</div>
 
  
 +
</style>
  
 +
<div class="banner">
 +
.    <!--- <canvas style="width: 100%; height: 100%; z-index: -1;"></canvas> -->
 +
<video muted id="headervideo" src="https://static.igem.org/mediawiki/2017/b/b5/T--Franconia--DNA_background_c.mp4" style="width:100%; height:100%" autoplay
 +
  loop></video>
 +
<div class="banner-heading"><h1>B.E.A.M.</h1>
 +
<h3>Biocompatible Elastic Artificial Muscle</h3>
 +
<div class="banner-button">Beam me up!</div>
 +
</div>
  
 +
</div>
  
 +
<div class="container-fluid">
 +
<div class="content">
 +
<h3>Abstract</h3>
 +
<p>
 +
The development of artificial muscles attracts wide interest for industrial and medical
 +
applications. Regarding manufacturing, robotic devices with synthetic muscles are able to
 +
handle complex-shaped materials more precisely. Moreover, artificial musculatures in medical
 +
prostheses can improve the wearing comfort while conveying a rather natural feeling.
 +
Currently, muscle-like contractions can be obtained by capacitor systems or by molecular
 +
machines incorporating tissue. This project aims to replace the common materials in both
 +
branches by biological tissue. While increasing ecological friendliness and the compatibility
 +
with human tissue, those fabricated composites can compete with human biological
 +
material. <br> <br> </p>
 +
<div class = "center home">
 +
                <div class="content">
 +
                    <h3>Method 1</h3>
 +
                </div>
 +
                <div class = "row">
 +
                    <a href="https://2017.igem.org/Team:Franconia/Project/Beam#beam1_1">
 +
                        <div class = "col-sm-4">
 +
                            <h4>Step 1</h4>
 +
                            <img src = "https://static.igem.org/mediawiki/2017/a/a9/T--Franconia--BEAM-BRICKSWITHOUT.png">
 +
                            <div>
 +
                                <p>Protein Building Blocks</p>
 +
                            </div>
 +
                        </div>
 +
                    </a>
 +
                    <a href="https://2017.igem.org/Team:Franconia/Project/Beam#beam1_3">
 +
                        <div class = "col-sm-4">
 +
                            <h4>Step 2</h4>
 +
                            <img src = "https://static.igem.org/mediawiki/2017/5/5d/T--Franconia--BEAM-NANOSHIT.png">
 +
                            <div>
 +
                                <p>Pilis/Carbon Nano Tubes are added</p>
 +
                            </div>
 +
                        </div>
 +
                    </a>
 +
                    <a href="https://2017.igem.org/Team:Franconia/Project/Beam#beam1_4">
 +
                        <div class = "col-sm-4 lastStep">
 +
                            <h4>Step 3</h4>
 +
                            <img src = "https://static.igem.org/mediawiki/2017/d/d6/T--Franconia--BEAM-MUSCLE1.png">
 +
                            <div>
 +
                                <p>Artificial Muscle is created</p>
 +
                            </div>
 +
                        </div>
 +
                    </a>
 +
                </div>
 +
                <div class="content">
 +
                    <h3>Method 2</h3>
 +
                </div>
 +
                <div class = "row">
 +
                    <a href="https://2017.igem.org/Team:Franconia/Project/Beam#beam2_1">
 +
                        <div class = "col-sm-4">
 +
                            <h4>Step 1</h4>
 +
                            <img src = "https://static.igem.org/mediawiki/2017/c/c2/T--Franconia--BEAM-BRICKSWITH.png">
 +
                            <div>
 +
                                <p>Protein Building Blocks</p>
 +
                            </div>
 +
                        </div>
 +
                    </a>
 +
                    <a href="https://2017.igem.org/Team:Franconia/Project/Beam#beam2_3">
 +
                        <div class = "col-sm-4">
 +
                            <h4>Step 2</h4>
 +
                            <img src = "https://static.igem.org/mediawiki/2017/7/73/T--Franconia--BEAM-AZO.png">
 +
                            <div>
 +
                                <p>Azo Dye is added</p>
 +
                            </div>
 +
                        </div>
 +
                    </a>
 +
                    <a href="https://2017.igem.org/Team:Franconia/Project/Beam#beam2_4">
 +
                        <div class = "col-sm-4 lastStep">
 +
                            <h4>Step 3</h4>
 +
                            <img src = "https://static.igem.org/mediawiki/2017/f/ff/T--Franconia--BEAM-MUSCLE2.png">
 +
                            <div>
 +
                                <p>Artificial Muscle is created</p>
 +
                            </div>
 +
                        </div>
 +
                    </a>
 +
                </div>
 +
            </div>
 +
<p>
 +
Like a capacitor, the dielectric elastomer actuator (DEA) comprises two lightweight and
 +
flexible electrodes separated by an insulating elastomeric layer. In a first set of experiments,
 +
the elastomer layers in the capacitor-based muscle need to be replaced by appropriate protein
 +
structures. P-Pili with their excellent elastic properties and proteins with high amounts of
 +
helical secondary architecture are to be tested for this approach. In a next step, the currently
 +
used light weighted graphene or carbon nanotube layers need to be replaced by the Pili to
 +
provide conductivity and flexibility comparable to the carbon nanotubes. Both fibril types can
 +
be easily expressed in Geobacter sulflurreducens and Escherichia coli in a large scale, which
 +
makes the overall system extremely feasible since one organism can provide the whole
 +
material. <br> <br>
 +
        Another tissue with muscle-like contractions will be fabricated through polymers with
 +
integrated molecular machines. Herein, the latter are based on azo dyes capable of having
 +
their entire network contracted by light irradiation. The biopolymer matrix is fabricated by
 +
Escherichia coli and consists of catcher-tag systems modified with a biotin-accepting anchor.
 +
The molecular machines attach to the biopolymer tissue via biotin and biotin acceptor
 +
interactions. Due to the crosslinking of the single protein strains the stiffness of the resulting
 +
tissue can be adjusted accurately. <br> <br>
 +
In both cases, the achieved tissues are cell-free and can immediately be adapted to the system.
 +
Within the scope of the project, the construction of a DEA-prototype is planned, since the
 +
realization of electrical stimuli is more feasible than through photo-induced signals.
 +
</p>
 +
<h3>After iGEM</h3>
 +
Read our essay on <a href="https://static.igem.org/mediawiki/2017/4/44/T--Franconia--AfterIGEM.pdf" target="_blank">"The German Bundestag and synthetic biology: legal provisions, problems and future prospects"</a>.
  
 +
</div>
 +
</div>
  
 +
<script>
 +
$(document).ready(function () {
 +
$('.banner-button').click(function () {
 +
console.log('scrolling');
 +
$('html, body').stop().animate({
 +
'scrollTop': $('.content').offset().top - 100
 +
}, 500, 'swing');
 +
});
 +
})
  
 +
</script>                                                                             
 
</html>
 
</html>
 +
{{Franconia/Footer}}

Latest revision as of 17:55, 14 December 2017

Abstract

The development of artificial muscles attracts wide interest for industrial and medical applications. Regarding manufacturing, robotic devices with synthetic muscles are able to handle complex-shaped materials more precisely. Moreover, artificial musculatures in medical prostheses can improve the wearing comfort while conveying a rather natural feeling. Currently, muscle-like contractions can be obtained by capacitor systems or by molecular machines incorporating tissue. This project aims to replace the common materials in both branches by biological tissue. While increasing ecological friendliness and the compatibility with human tissue, those fabricated composites can compete with human biological material.

Like a capacitor, the dielectric elastomer actuator (DEA) comprises two lightweight and flexible electrodes separated by an insulating elastomeric layer. In a first set of experiments, the elastomer layers in the capacitor-based muscle need to be replaced by appropriate protein structures. P-Pili with their excellent elastic properties and proteins with high amounts of helical secondary architecture are to be tested for this approach. In a next step, the currently used light weighted graphene or carbon nanotube layers need to be replaced by the Pili to provide conductivity and flexibility comparable to the carbon nanotubes. Both fibril types can be easily expressed in Geobacter sulflurreducens and Escherichia coli in a large scale, which makes the overall system extremely feasible since one organism can provide the whole material.

Another tissue with muscle-like contractions will be fabricated through polymers with integrated molecular machines. Herein, the latter are based on azo dyes capable of having their entire network contracted by light irradiation. The biopolymer matrix is fabricated by Escherichia coli and consists of catcher-tag systems modified with a biotin-accepting anchor. The molecular machines attach to the biopolymer tissue via biotin and biotin acceptor interactions. Due to the crosslinking of the single protein strains the stiffness of the resulting tissue can be adjusted accurately.

In both cases, the achieved tissues are cell-free and can immediately be adapted to the system. Within the scope of the project, the construction of a DEA-prototype is planned, since the realization of electrical stimuli is more feasible than through photo-induced signals.

After iGEM

Read our essay on "The German Bundestag and synthetic biology: legal provisions, problems and future prospects".

Sponsors

Foundations

FOLLOW US