Difference between revisions of "Team:INSA-UPS France/test/description"

 
(19 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
 
{{INSA-UPS_France/Links_new}}
 
{{INSA-UPS_France/Links_new}}
 
{{INSA-UPS_France/Style_new}}
 
{{INSA-UPS_France/Style_new}}
 
{{INSA-UPS_France/Header_new}}
 
{{INSA-UPS_France/Header_new}}
 
<html>
 
<html>
 +
 
<style>
 
<style>
 
+
   section img{
main{
+
    max-width:500px;
   position:relative;
+
  overflow: auto;
+
  height:100%;
+
}
+
 
+
.main_content{
+
  position:fixed;   
+
  top:90px;
+
  right:0px;
+
  left:0px;
+
  bottom:0px;
+
  overflow:auto;
+
  background-image: linear-gradient(45deg, #4296c1 0%, #e4efe9 100%);
+
}
+
.middle_container{ 
+
  padding-bottom: 80px;
+
}
+
.section_container{
+
  width:1200px;
+
  min-height:100%;
+
  margin:0px auto;
+
  position:relative;
+
}
+
@media screen and (max-width: 1200px){
+
    .section_container{
+
      width:100%;
+
    }
+
 
   }
 
   }
section{
 
  background-color: rgba(255,255,255,0.2);
 
  padding:3% 10%;
 
  text-align: justify;
 
  border-radius:20px;
 
  position:relative;
 
  margin-top:100px;
 
}
 
 
 
</style>
 
</style>
 
<!-- C O N T E N T -->
 
 
 
 
  <style>
 
 
section{
 
  margin-bottom: 40px;
 
  }
 
  section img{
 
      /**/
 
    }
 
    section h1{
 
      font-family: 'Quicksand', sans-serif;
 
      font-size:34pt;
 
          margin-top: -85px;
 
      text-align: right;
 
    }
 
    section h2{
 
      font-family: 'Quicksand', sans-serif;
 
      font-size:20pt;
 
    }
 
    section p, section ul{
 
      font-family: 'Merriweather', serif;
 
      font-size:14pt;
 
      font-weight: 300;
 
      margin-top:20px;
 
    }
 
  </style>
 
 
  
 
   <main class="site-main">
 
   <main class="site-main">
Line 82: Line 16:
 
   <div class="section_container">
 
   <div class="section_container">
  
     <section style="background: none;">
+
     <section style="background:none;padding:0px !important;z-index:100; ">
      <img src="https://static.igem.org/mediawiki/2017/7/78/T--INSA-UPS_France--Microbioworld_logo.png" alt="">
+
      <h1 style="font-size:40pt;letter-spacing: 1vw;z-index:120;text-align: center;">Public Engagement &amp; Education</h1>
      <table>
+
    </section>
        <tr style="height:70px;">
+
    <section style="margin:0px;">
          <td style="border:none;"><img style="height:100%;" src="https://static.igem.org/mediawiki/2017/b/bd/T--INSA-UPS_France--card_game_en_flag.png" alt=""></td>
+
      <p>
          <td style="border:none;"><img style="height:100%;" src="https://static.igem.org/mediawiki/2017/c/c5/T--INSA-UPS_France--card_game_fr_flag.png" alt=""></td>
+
      We wanted to show that it is possible to talk about biology, science in general and ethics with people from all ages and with different knowledges. We have articulated our outreach strategy around three actions: discover, practice and discuss, to empower citizens or future citizens about their capability of exchange and acting on science. These three milestones are essential for us to give people a better understanding of the current challenges of science in the society.
        </tr>
+
       </p>
       </table>
+
 
     </section>
 
     </section>
  
     <style>
+
     <section style="background: none;margin:0px;">
      p.go-further{
+
      <img style="width:100%;" src="https://static.igem.org/mediawiki/2017/archive/2/29/20171007163554%21T--INSA-UPS_France--HP-PE_Overview.png" alt="">
        font-style:italic;
+
     </section>
      }
+
      p.go-further.fr:before{
+
        content:'Pour aller plus loin : ';
+
        font-style:italic;
+
        font-weight: 700;
+
      }
+
      p.go-further.en:before{
+
        content:'To go further: ';
+
        font-style:italic;
+
        font-weight: 700;
+
      }
+
     </style>
+
  
     <div class="booklet_fr">
+
     <section style="border: #ae3d3d solid 5px; margin-top:50px;">
       <section>
+
       <h1 style="color: #ae3d3d; margin-top:-110px;">Discover</h1>
        <h1>R&egrave;gles de base</h1>
+
      <img src="https://static.igem.org/mediawiki/2017/1/18/T--INSA-UPS_France--HP-PE_Discover.png" alt="" style="float:right;width:30%; margin-left:20px;">
        <div style="width:100%; text-align: center;">
+
      <p>
          <img style="width:200px;" src="https://static.igem.org/mediawiki/2017/b/bd/T--INSA-UPS_France--Microbioworld_licence_cc.logo.large.png" alt="">
+
         The first question to be asked to popularise biology is <b>&ldquo;how to reach people?&rdquo;</b>
          <img style="width:200px;" src="https://static.igem.org/mediawiki/2017/c/cc/T--INSA-UPS_France--Microbioworld_licence_by-nc-nd.png" alt="">
+
      </p>
        </div>
+
      <p>
         <p>
+
         In order to make synthetic biology accessible to a wider audience, we had to adapt our speeches and supports to the different people we have met. We had to built ad hoc communicative tools (workshops, card game...) to engage a young or non-scientific public in learning about different fields of biology.
          <i>Nous avons choisis de placer ce jeu sous la protection d'une licence Creative Commons afin de pouvoir le diffuser en toute libert&eacute; et d'en faire un outils p&eacute;dagogique ouvert &agrave; tous les curieux.</i>
+
      </p>
        </p>
+
    </section>
        <h2>Contexte</h2>
+
         <p>
+
          <i>MicroBioWorld</i> est un jeu de cartes consacr&eacute; &agrave; la microbiologie. Ce jeu, bas&eacute; sur les connaissances scientifiques actuelles, vous propose un voyage dans le monde des microorganismes afin de mieux appr&eacute;hender leur existence, leur diversit&eacute; et leur manipulation.
+
        </p>
+
        <p>
+
          <i>MicroBioWorld</i> a &eacute;t&eacute; con&ccedil;u par des &eacute;tudiants dans le cadre de la comp&eacute;tition iGEM (= international Genetically Engineered Machine) et s&rsquo;adresse &agrave; tous, &agrave; partir de 10 ans, en famille ou entre amis.
+
        </p>
+
  
        <h2>But du jeu</h2>
+
    <section style="border: #3377a8 solid 5px;">
        <p>
+
      <h1 style="color: #3377a8; margin-top:-110px;">Practice</h1>
          Chaque joueur incarne une colonie bact&eacute;rienne (ensemble de bact&eacute;ries issues d&rsquo;une m&ecirc;me bact&eacute;rie m&egrave;re). Pour gagner, soyez le premier &agrave; constituer une colonie de 10 log, soit dix milliards de bact&eacute;ries! Pour cela, vous utiliserez les avantages conf&eacute;r&eacute;s par votre type de bact&eacute;rie et les am&eacute;liorations que vous lui aurez apport&eacute;es!
+
      <img src="https://static.igem.org/mediawiki/2017/3/38/T--INSA-UPS_France--HP-PE_Practice.png" alt="" style="float:right;width:30%; margin-left:20px;">
        </p>
+
      <p>
 +
        One of the most important thing in science is <b>scientific methods and experiments</b>. In order to give a better understanding of the globality of the scientific work, we thought it was a good idea to make people do lab experiments. Moreover, practise often results in scientific and ethical questioning.
 +
      </p>
 +
    </section>
  
        <h2>D&eacute;roulement d'un tour</h2>
+
    <section style="border: #6aa84f solid 5px;">
        <h3>Pr&eacute;paration : </h3>
+
      <h1 style="color: #6aa84f; margin-top:-110px;">Discuss</h1>
        <p>
+
      <img src="https://static.igem.org/mediawiki/2017/2/22/T--INSA-UPS_France--HP-PE_Discuss.png" alt="" style="float:right;width:30%; margin-left:20px;"">
          Chaque joueur re&ccedil;oit d&rsquo;abord une carte &ldquo;bact&eacute;rie&rdquo;. Tous les joueurs placent leur carte bact&eacute;rie face visible devant eux.
+
      <p>
        </p>
+
         Our biggest challenge is to <b>open up the debate</b> about synthetic biology, by bringing forward major scientific breakthrough but also showing that there is a need to think about ethical and technical limits. We want to address some controversial topics with the public such as limits and potentials of synthetic biology, ethics in science, GMOs legislation…
        <p>
+
      </p>
          Les cartes &ldquo;milieux&rdquo; permettent de mimer un environnement dans lequel les diff&eacute;rentes colonies vont &eacute;voluer pendant la partie (voir plus d&rsquo;explications dans le paragraphe &ldquo;milieux&rdquo;). La partie commence en milieu &ldquo;LB&rdquo;. M&eacute;langez toutes les autres cartes &ldquo;milieux&rdquo; et posez-les face cach&eacute;e sur la table.
+
    </section>
        </p>
+
         <p>
+
          M&eacute;langez ensuite les cartes &ldquo;pioche&rdquo;. A partir de cette pioche, distribuez une main de 3 cartes &agrave; chaque joueur (ne pas prendre en compte l&rsquo;effet &ldquo;cette carte doit &ecirc;tre pos&eacute;e imm&eacute;diatement&rdquo;).
+
        </p>
+
        <p>
+
          Chaque joueur commence &agrave; 5 log de bact&eacute;ries, indiquez votre progression sur la carte gr&acirc;ce &agrave; un petit pointeur comme une pointe de stylo ou un morceau de papier triangulaire.
+
        </p>
+
  
        <h3>Tours : </h3>
+
    <section>
        <p>
+
      <p>
          A votre tour, vous pouvez d’abord jouer une carte de votre main. Effectuez ensuite une action parmi les trois proposées :
+
        As our project is focused on microorganisms in public health, it can be kind of scary for the general public. So we wanted for our public engagement strategy to show how microbial diversity affects our world.
        </p>
+
      </p>
        <ul>
+
      <p style="text-align: center;">
          <li>Piocher une carte. Sauf indication contraire la main ne peut contenir que 3 cartes. Vous pouvez vous d&eacute;fausser d&rsquo;une carte pour piocher. </li>
+
        <b><i>Click on one of the event we took part into see how we developed it in this aim.</i></b>
          <li>Se diviser (gagner 1 log &agrave; la colonie)</li>
+
      </p>
        </ul>
+
    </section>
  
        <p class="go-further fr">
+
    <style>
          une colonie bact&eacute;rienne se d&eacute;veloppe en utilisant les ressources du milieu (carbone, azote, fer, etc). Au sein d&rsquo;une colonie, les bact&eacute;ries se multiplient en cr&eacute;ant un double d&rsquo;elles-m&ecirc;me : on dit qu&rsquo;elles se divisent. &nbsp;Ainsi, &agrave; chaque division, le nombre de bact&eacute;ries est multipli&eacute; par 2 dans la colonie. Dans le jeu, les &ldquo;log&rdquo; sont utilis&eacute;es pour d&eacute;crire la quantit&eacute; de bact&eacute;ries, qui peut atteindre des milliards d&rsquo;individus. Par exemple, dans le gros intestin, lieu de r&eacute;sidence de multiples bact&eacute;ries, il y a environ 14 log de bact&eacute;ries, soit cent mille milliards de bact&eacute;ries !
+
      .overview_pe{   
        </p>
+
        text-align: center;
 +
        display:table;
 +
        table-layout: fixed;
 +
      }
  
        <ul>
+
       .pe_category_ov{
          <li>Attaquer une colonie adverse (- 1 log à la colonie adverse)</li>
+
         display: table-cell;
        </ul>
+
        width:25%;
 
+
         height:100%;
        <p class="go-further fr">
+
        vertical-align: top;
          Certaines bact&eacute;ries disposent de tout un arsenal pour limiter la croissance de leurs comp&eacute;titeurs (par exemple en pi&eacute;geant certaines ressources essentielles comme le fer), voire de les &eacute;liminer! ( par exemple en utilisant des toxines). Attention, si dans le jeu toutes les bact&eacute;ries sont capables de s&rsquo;attaquer entre elles, il en va autrement dans la nature car elles n&rsquo;ont pas toutes le m&ecirc;me environnement, et ne sont donc que rarement en comp&eacute;tition.
+
      }
        </p>
+
      .pe-category-inside{
       </section>
+
        background:rgba(255,255,255,0.2);
 
+
         border-radius: 20px;
      <style>
+
         overflow: hidden;
        .card_container{
+
         margin:10px;
          margin-top:20px;
+
         cursor:pointer;
         }
+
         border:solid 3px transparent;
        .cards_table td{
+
      }
          position:relative;
+
      .pe-category-inside img{
          z-index:10;
+
        width:100%;
          cursor:pointer;
+
      }
         }
+
      .pe-category-inside p{
        .cards_table img{
+
         padding:20px;
          width:100%;
+
         text-align: justify;
          text-align:center;
+
      }
            -webkit-transition: all 0.5s ease;
+
      .pe-category-inside.category-selected{
            -moz-transition: all 0.5s ease;
+
         border: solid 3px black;
            -o-transition: all 0.5s ease;
+
      }
            -ms-transition: all 0.5s ease;
+
    </style>
          transition: all 0.5s ease;
+
         }
+
        .cards_table td.active img, .cards_table td:hover img{
+
          width:130%;
+
          text-align:center;
+
          margin-left:-10%;   
+
         }
+
        .cards_table td.active, .cards_table td:hover{
+
          z-index:20;
+
         }
+
        .cards_descr{
+
          position:relative;
+
          width:70%;
+
          margin:20px 5% 50px auto;
+
          overflow: visible;
+
         }
+
        .card_container{
+
          display:none;
+
         }
+
        .card_container.active{
+
          display:table !important;
+
        }
+
        .card_img{
+
          display:table-cell;
+
          width:30%;
+
          vertical-align: middle;
+
 
+
        }
+
        .card_img img{
+
          width:100%;
+
        }
+
        .card_img{
+
          display:table-cell;
+
          width:30%;
+
          vertical-align: middle;
+
 
+
         }
+
        .card_img img{
+
          width:100%;
+
         }
+
        .card_expl{
+
          display:table-cell;
+
          width:70%;
+
          vertical-align: top;
+
          position:relative;
+
          height:100%;
+
        }
+
        .card_expl > div{
+
          margin-left:40px;
+
          background: rgba(255,255,255,0.2);
+
          height:100%;
+
          border-radius:20px;
+
         }
+
        .card_expl p{
+
          padding:10px 60px 10px 60px;
+
          text-align:justify;
+
        }
+
      </style>
+
 
+
      <section>
+
        <h1>Cartes Bact&eacute;ries</h1>
+
        <p class="go-further fr">
+
          Les bact&eacute;ries sont des organismes microscopiques (entre 0.2 et 2 &micro;m) et ne sont compos&eacute;s que d&rsquo;une simple cellule. Actuellement, on estime qu&rsquo;il existe &nbsp;des milliards &ldquo;d&rsquo;esp&egrave;ces&rdquo; bact&eacute;riennes, occupant la quasi-totalit&eacute; des environnements (des zones glac&eacute;es aux d&eacute;serts chauds, du syst&egrave;me digestif humain au confin des abysses marins&hellip;). <br />
+
          Les bact&eacute;ries ont des propri&eacute;t&eacute;s, des formes et des comportements tr&egrave;s divers. Certaines sont de forme allong&eacute;e (bacilles), d&rsquo;autres rondes (coques). <br />
+
          Les bact&eacute;ries prototrophes sont capables de se nourrir dans n&rsquo;importe quel environnement, alors que les auxotrophes ont besoin que leur environnement contienne tous les &eacute;l&eacute;ments nutritifs pour se d&eacute;velopper. <br />
+
          Certaines sont capables de provoquer des maladies chez l&rsquo;homme, ce sont les &nbsp;pathog&egrave;nes. <br />
+
          La communaut&eacute; scientifique a class&eacute; les bact&eacute;ries en fonction de leur capacit&eacute; &agrave; &ecirc;tre color&eacute;es par une technique appel&eacute; test de Gram (elles sont dites &agrave; Gram positif ou &agrave; Gram n&eacute;gatif), cette coloration d&eacute;pend de la composition de la membrane qui les entoure. <br />
+
          Sur milieu g&eacute;los&eacute;, une bact&eacute;rie qui se multiplie finit par former un petit point visible &agrave; l&rsquo;oeil nu (environ 8 log). Il s&rsquo;agit d&rsquo;une colonie bact&eacute;rienne, elle va continuer de s&rsquo;&eacute;tendre tant que les ressources nutritives sont suffisantes pour assurer son d&eacute;veloppement. La forme et la couleur de ces colonies d&eacute;pendent des bact&eacute;ries. <br />
+
        </p>
+
      </section>
+
  
 +
    <div class="overview_pe">
 
       <div>
 
       <div>
      <table class="cards_table">
 
        <tr>
 
          <td id="img1"  class="active">
 
            <img src="https://static.igem.org/mediawiki/2017/1/1b/T--INSA-UPS_France--Microbioworld_Cards_fr_Bsubtilis-min.png" alt="">
 
          </td>
 
          <td id="img2"  >
 
            <img src="https://static.igem.org/mediawiki/2017/5/5e/T--INSA-UPS_France--Microbioworld_Cards_fr_Dradiodurans-min.png" alt="">
 
          </td>
 
          <td id="img3"  >
 
            <img src="https://static.igem.org/mediawiki/2017/e/e8/T--INSA-UPS_France--Microbioworld_Cards_fr_Ecoli-min.png" alt="">
 
          </td>
 
          <td id="img4"  >
 
            <img src="https://static.igem.org/mediawiki/2017/6/65/T--INSA-UPS_France--Microbioworld_Cards_fr_Saureus-min.png" alt="">
 
          </td>
 
          <td id="img5"  >
 
            <img src="https://static.igem.org/mediawiki/2017/e/ef/T--INSA-UPS_France--Microbioworld_Cards_fr_Spneumoniae-min.png" alt="">
 
          </td>
 
          <td id="img6"  >
 
            <img src="https://static.igem.org/mediawiki/2017/3/34/T--INSA-UPS_France--Microbioworld_Cards_fr_Vcholerae-min.png" alt="">
 
          </td>
 
          <td></td>
 
        </tr>
 
      </table>
 
 
        
 
        
       <div class="card_container active" id="full_img1">
+
       <div class="pe_category_ov">
         <div class="card_img">
+
         <div class="pe-category-inside category-selected" data-target="1">
           <img src="https://static.igem.org/mediawiki/2017/f/f5/T--INSA-UPS_France--Microbioworld_Cards_fr_Bsubtilis.png" alt="">
+
           <img src="https://static.igem.org/mediawiki/2017/archive/8/86/20171007150227%21T--INSA-UPS_France--HP-Overview_PE_school.jpg" alt="">
        </div>
+
           <h2>School Education</h2>
        <div class="card_expl">
+
           <div class="card_text">
+
            <p>
+
              <b>Effet :</b> Sporulation
+
            </p>
+
            <p>
+
              Une fois par partie, lorsque votre colonie subit des d&eacute;g&acirc;ts, <i>Bacillus subtilis</i> peut entrer en sporulation. Vous ne subissez aucun d&eacute;g&acirc;t ce tour-ci.
+
            </p>
+
            <p>
+
              <b>Cat&eacute;gories:</b>  type bacille, Gram positif, non-pathog&egrave;ne, prototrophe.
+
            </p>
+
            <p class="go-further fr">
+
              La sporulation est une propri&eacute;t&eacute; permettant &agrave; certains organismes de survivre &agrave; diff&eacute;rents stress. Pour cela, la bact&eacute;rie se met dans un &eacute;tat v&eacute;g&eacute;tatif appel&eacute; dormance, et s&rsquo;entoure d&rsquo;une paroi sp&eacute;ciale qui lui permet de r&eacute;sister aux agressions ext&eacute;rieures. Quand les conditions s&rsquo;am&eacute;liorent, la spore peut &ldquo;germer&rdquo; et la bact&eacute;rie reprendre sa croissance. On a ainsi pu faire germer des spores isol&eacute;es sur des momies &eacute;gyptiennes !
+
            </p>
+
          </div>
+
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 
+
       <div class="pe_category_ov">
       <div class="card_container" id="full_img2">
+
         <div class="pe-category-inside" data-target="2">
         <div class="card_img">
+
           <img src="https://static.igem.org/mediawiki/2017/2/2f/T--INSA-UPS_France--HP-Overview_PE_game.JPG.jpg" alt="">
           <img src="https://static.igem.org/mediawiki/2017/1/12/T--INSA-UPS_France--Microbioworld_Cards_fr_Dradiodurans.png" alt="">
+
           <h2>Card Game</h2>
        </div>
+
        <div class="card_expl">
+
           <div class="card_text">
+
            <p>
+
              <b>Effet :</b> Polyextr&ecirc;mophile
+
            </p>
+
            <p>
+
              La croissance de <i>Deinococcus radiodurans</i> n&rsquo;est pas affect&eacute;e par la temp&eacute;rature et les UV.
+
            </p>
+
            <p>
+
              <b>Cat&eacute;gories:</b>  type coque, Gram positif, non-pathog&egrave;ne, auxotrophe
+
            </p>
+
            <p class="go-further fr">
+
              <span style="font-style:normal;">Deinococcus radiodurans</span> est une bact&eacute;rie polyextr&ecirc;mophile capable de se diviser m&ecirc;me &agrave; des temp&eacute;ratures extr&ecirc;mes . Elle suscite un grand int&eacute;r&ecirc;t dans la communaut&eacute; scientifique en raison de son impressionnante capacit&eacute; de survie. Poss&eacute;dant plusieurs copies de son ADN, cette bact&eacute;rie est beaucoup moins sensibles aux mutations caus&eacute;es par l&rsquo;environnement.
+
            </p>
+
          </div>
+
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 
+
       <div class="pe_category_ov">
       <div class="card_container" id="full_img3">
+
         <div class="pe-category-inside" data-target="3">
         <div class="card_img">
+
           <img src="https://static.igem.org/mediawiki/2017/d/dc/T--INSA-UPS_France--HP-Overview_PE_night.jpg" alt="">
           <img src="https://static.igem.org/mediawiki/2017/a/ae/T--INSA-UPS_France--Microbioworld_Cards_fr_Ecoli.png" alt="">
+
           <h2>European Researcher's Night</h2>
        </div>
+
        <div class="card_expl">
+
           <div class="card_text">
+
            <p>
+
              <b>Effet :</b> Microbiote
+
            </p>
+
            <p>
+
              Une fois dans la partie, vous pouvez choisir un joueur : vous faites alors partie du m&ecirc;me microbiote. Vous ne pouvez plus attaquer ou &ecirc;tre attaqu&eacute; par ce joueur jusqu&rsquo;&agrave; la fin de la partie. Arrivez le premier &agrave; 10 log pour battre votre microbiote.
+
            </p>
+
            <p>
+
              <b>Cat&eacute;gories :</b> type bacille, Gram n&eacute;gatif, non-pathog&egrave;ne, prototrophe
+
            </p>
+
            <p class="go-further fr">
+
              <span style="font-style:normal;">Escherichia coli</span> est naturellement pr&eacute;sente dans le syst&egrave;me digestif de l&rsquo;homme. C&rsquo;est m&ecirc;me le premier microorganisme &agrave; coloniser cet environnement &agrave; la naissance du b&eacute;b&eacute;. De part sa grande souplesse d&rsquo;utilisation, c&rsquo;est le mod&egrave;le bact&eacute;rien le plus &eacute;tudi&eacute; en laboratoire et elle est aussi tr&egrave;s utilis&eacute;e dans les bioindustries pour produire diff&eacute;rents compos&eacute;s organiques.
+
            </p>
+
          </div>
+
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 
+
       <div class="pe_category_ov">
       <div class="card_container" id="full_img4">
+
         <div class="pe-category-inside" data-target="4">
         <div class="card_img">
+
           <img src="https://static.igem.org/mediawiki/2017/1/18/T--INSA-UPS_France--HP-Overview_PE_conf.png" alt="">
           <img src="https://static.igem.org/mediawiki/2017/d/d4/T--INSA-UPS_France--Microbioworld_Cards_fr_Saureus.png" alt="">
+
           <h2>Seminar</h2>
        </div>
+
        <div class="card_expl">
+
           <div class="card_text">
+
            <p>
+
              <b>Effet :</b> Multir&eacute;sistance
+
            </p>
+
            <p>
+
              <i>Staphylococcus aureus</i> MRSA est r&eacute;sistante au chloramph&eacute;nicol et &agrave; l&rsquo;ampicilline.
+
            </p>
+
            <p>
+
              <b>Cat&eacute;gories :</b> type coque, Gram positif, pathog&egrave;ne, auxotrophe
+
            </p>
+
            <p class="go-further fr">
+
              Son nom commun est staphylocoque dor&eacute;e en raison des pigments qu&rsquo;elle produit qui conf&egrave;rent une couleur dor&eacute;e &agrave; ses colonies. Chez l&rsquo;homme, elle est naturellement pr&eacute;sente sur la peau. Cette bact&eacute;rie est surtout c&eacute;l&egrave;bre pour son caract&egrave;re pathog&egrave;ne quand elle a l'opportunit&eacute; d'infecter son h&ocirc;te, &agrave; la suite d&rsquo;une coupure par exemple. Le variant MRSA (Multi Resistant <span style="font-style:normal;">Staphylococcus Aureus</span>) est plus tristement c&eacute;l&egrave;bre en raison de sa capacit&eacute; &agrave; r&eacute;sister &agrave; la plupart des antibiotiques. Dans les h&ocirc;pitaux, elle provoque des maladies nosocomiales.
+
            </p>
+
          </div>
+
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 
+
    </div>
       <div class="card_container" id="full_img5">
+
    <div>
         <div class="card_img">
+
       <div class="pe_category_ov">
           <img src="https://static.igem.org/mediawiki/2017/b/bf/T--INSA-UPS_France--Microbioworld_Cards_fr_Spneumoniae.png" alt="">
+
         <div class="pe-category-inside" data-target="5">
        </div>
+
           <img src="https://static.igem.org/mediawiki/2017/a/a2/T--INSA-UPS_France--HP-Overview_PE_high-school.jpg" alt="">
        <div class="card_expl">
+
           <h2>High School Lab</h2>
           <div class="card_text">
+
            <p>
+
              <b>Effet :</b> Comp&eacute;tence
+
            </p>
+
            <p>
+
              Une fois dans la partie, lorsque vous attaquez une autre colonie ou qu&rsquo;une autre colonie vous attaque, vous pouvez lui voler une carte plasmide. Mettez ce plasmide dans votre main, vous pouvez alors avoir jusqu&rsquo;&agrave; 4 cartes en main.
+
            </p>
+
            <p>
+
              <b>Cat&eacute;gories :</b> type coque, Gram n&eacute;gatif, pathog&egrave;ne, prototrophe.
+
            </p>
+
            <p class="go-further fr">
+
              Cette bact&eacute;rie est un pathog&egrave;ne de l&rsquo;homme retrouv&eacute; dans diff&eacute;rentes infections (pneumonie, otites, m&eacute;ningite&hellip;). Le m&eacute;canisme de comp&eacute;tence de <span style="font-style:normal;">Streptococcus pneumoniae</span> lui permet d&rsquo;acqu&eacute;rir naturellement des plasmides d&rsquo;autres microorganismes (voir plus d&rsquo;explications dans le paragraphe &ldquo;Plasmides&rdquo;).
+
            </p>
+
          </div>
+
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 
+
       <div class="pe_category_ov">
       <div class="card_container" id="full_img6">
+
         <div class="pe-category-inside" data-target="6">
         <div class="card_img">
+
           <img src="https://static.igem.org/mediawiki/2017/1/1f/T--INSA-UPS_France--HP-Overview_PE_exposciences.jpg" alt="">
           <img src="https://static.igem.org/mediawiki/2017/8/86/T--INSA-UPS_France--Microbioworld_Cards_fr_Vcholerae.png" alt="">
+
           <h2>Exposciences</h2>
        </div>
+
        <div class="card_expl">
+
           <div class="card_text">
+
            <p>
+
              <b>Effet :</b>  Toxine chol&eacute;rique
+
            </p>
+
            <p>
+
              Si la colonie attaqu&eacute;e poss&egrave;de au moins 7 log, Vibrio cholerae peut lancer une division en plus de son attaque.
+
            </p>
+
            <p>
+
              <b>Cat&eacute;gories :</b> type bacille, Gram n&eacute;gatif, pathog&egrave;ne, auxotrophe.
+
            </p>
+
            <p class="go-further fr">
+
              <span style="font-style:normal;">Vibrio cholerae</span> est une bact&eacute;rie qui vit dans les eaux stagnantes, elle est responsable du chol&eacute;ra. Lorsqu&rsquo;elle est ing&eacute;r&eacute;e par l&rsquo;homme, elle perturbe le syst&egrave;me digestif et provoque des diarrh&eacute;es, elle rejoint alors d&rsquo;autres cours d&rsquo;eau, ce qui lui permet de coloniser de nouveaux environnements. Elle poss&egrave;de aussi un syst&egrave;me de perforation qui lui permet d&rsquo;attaquer d&rsquo;autres bact&eacute;ries pour exploiter leurs ressources.
+
            </p>
+
          </div>
+
 
         </div>
 
         </div>
 
       </div>
 
       </div>
       </div>
+
       <div class="pe_category_ov">
 
+
         <div class="pe-category-inside" data-target="7">
 
+
           <img src="https://static.igem.org/mediawiki/2017/d/de/T--INSA-UPS_France--HP-Overview_PE_bib.jpg" alt="">
      <section>
+
           <h2>Exhibitions on campus</h2>
        <h1>Cartes milieux </h1>
+
        <p>
+
          Les cartes milieux permettent de mimer un environnement dans lequel les diff&eacute;rentes colonies vont &eacute;voluer pendant la partie. La carte &ldquo;repiquage&rdquo; permet de changer le milieu de culture : lorsqu&rsquo;elle est jou&eacute;e, retournez la premi&egrave;re carte de la pile milieux, elle devient le nouveau milieu commun.
+
        </p>
+
        <p class="go-further fr">
+
          en laboratoire, les microorganismes sont cultiv&eacute;s sur des supports (appel&eacute;s milieux) qui fournissent les nutriments n&eacute;cessaires &agrave; leur croissance. Le milieu g&eacute;lifi&eacute; est conditionn&eacute; dans une bo&icirc;te de Petri, une petite bo&icirc;te en plastique transparent. Un milieu additionn&eacute; d&rsquo;un antibiotique est dit  s&eacute;lectif : seules les bact&eacute;ries r&eacute;sistantes &agrave; cet antibiotique pourront se d&eacute;velopper. Certains milieux sont dits diff&eacute;rentiels : ils permettent de colorer les bact&eacute;ries en fonction de leurs propri&eacute;t&eacute;s. 
+
         </p>
+
      </section>
+
 
+
      <div>
+
      <table class="cards_table">
+
        <tr>
+
          <td id="img10"  class="active"><img src="https://static.igem.org/mediawiki/2017/a/a6/T--INSA-UPS_France--Microbioworld_Media_LB25-min.png" alt=""></td>
+
          <td id="img11" ><img src="https://static.igem.org/mediawiki/2017/4/48/T--INSA-UPS_France--Microbioworld_Media_LBUV-min.png" alt=""></td>
+
           <td id="img12" ><img src="https://static.igem.org/mediawiki/2017/e/ea/T--INSA-UPS_France--Microbioworld_Media_LB45-min.png" alt=""></td>
+
           <td id="img13" ><img src="https://static.igem.org/mediawiki/2017/f/f9/T--INSA-UPS_France--Microbioworld_Media_LBamp-min.png" alt=""></td>
+
          <td id="img14" ><img src="https://static.igem.org/mediawiki/2017/e/e3/T--INSA-UPS_France--Microbioworld_Media_LBchlo-min.png" alt=""></td>
+
          <td id="img15" ><img src="https://static.igem.org/mediawiki/2017/f/f9/T--INSA-UPS_France--Microbioworld_Media_LBconta-min.png" alt=""></td>
+
          <td id="img16" ><img src="https://static.igem.org/mediawiki/2017/3/36/T--INSA-UPS_France--Microbioworld_Media_chap-min.png" alt=""></td>
+
          <td id="img17" ><img src="https://static.igem.org/mediawiki/2017/5/51/T--INSA-UPS_France--Microbioworld_Media_mcc-min.png" alt=""></td>
+
          <td id="img18" ><img src="https://static.igem.org/mediawiki/2017/0/04/T--INSA-UPS_France--Microbioworld_Media_min-min.png" alt=""></td>
+
        </tr>
+
      </table>
+
     
+
      <div class="card_container active" id="full_img10">
+
        <div class="card_img">
+
          <img src="https://static.igem.org/mediawiki/2017/b/b4/T--INSA-UPS_France--Microbioworld_Media_LB25.png" alt="">
+
        </div>
+
        <div class="card_expl">
+
          <div class="card_text">
+
            <p>
+
              <b>Effet :</b> les bact&eacute;ries se divisent et attaquent normalement. C&rsquo;est le milieu de culture de d&eacute;part.
+
            </p>
+
            <p class="go-further fr">
+
            Il est compos&eacute; d&rsquo;extrait de levure, de peptone (m&eacute;lange de petites mol&eacute;cules prot&eacute;iques qui fournit notamment la mati&egrave;re azot&eacute;e), de sel et d&rsquo;eau.
+
            </p>
+
          </div>
+
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 
+
       <div class="pe_category_ov">
       <div class="card_container" id="full_img11">
+
         <div class="pe-category-inside" data-target="8">
         <div class="card_img">
+
           <img src="https://static.igem.org/mediawiki/2017/b/ba/T--INSA-UPS_France--HP-Overview_PE_press.jpg" alt="">
           <img src="https://static.igem.org/mediawiki/2017/9/93/T--INSA-UPS_France--Microbioworld_Media_LBUV.png" alt="">
+
           <h2>Press</h2>
        </div>
+
        <div class="card_expl">
+
           <div class="card_text">
+
            <p>
+
              <b>Effet :</b> au d&eacute;but de votre tour, vous perdez 1 log avant de pouvoir effectuer toute action.
+
            </p>
+
            <p class="go-further fr">
+
            Des mutations se produisent naturellement dans le g&eacute;nome mais elles sont tr&egrave;s ponctuelles. Le rayonnement Ultra-Violet est un agent mutag&egrave;ne : il favorise l'apparition d&rsquo;un grand nombre de mutations qui alt&egrave;rent l&rsquo;information de l&rsquo;ADN. S&rsquo;il y a trop de mutations, la bact&eacute;rie n&rsquo;est plus capable de maintenir toutes ses fonctions vitales.
+
            </p>
+
          </div>
+
 
         </div>
 
         </div>
 
       </div>
 
       </div>
 +
    </div>
  
      <div class="card_container" id="full_img12">
+
    </div>
        <div class="card_img">
+
          <img src="https://static.igem.org/mediawiki/2017/0/02/T--INSA-UPS_France--Microbioworld_Media_LB45.png" alt="">
+
        </div>
+
        <div class="card_expl">
+
          <div class="card_text">
+
            <p>
+
              <b>Effet :</b> les bact&eacute;ries non thermophiles ne peuvent plus se diviser.
+
            </p>
+
            <p class="go-further fr">
+
            Les microorganismes thermophiles sont adapt&eacute;s pour vivre dans des milieux &agrave; tr&egrave;s haute temp&eacute;rature comme les volcans ou les sources chaudes. Une temp&eacute;rature &eacute;lev&eacute;e augmente la fluidit&eacute; de la membrane et inactive de nombreuses mol&eacute;cules chez les microorganismes. Les thermophiles utilisent des acides gras diff&eacute;rents pour maintenir l&rsquo;int&eacute;grit&eacute; de leur membrane. Ils pr&eacute;sentent aussi des prot&eacute;ines thermor&eacute;sistantes : elles ont une structure plus compacte et sont plus stables.
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
      <div class="card_container" id="full_img13">
 
        <div class="card_img">
 
          <img src="https://static.igem.org/mediawiki/2017/0/0b/T--INSA-UPS_France--Microbioworld_Media_LBamp.png" alt="">
 
        </div>
 
        <div class="card_expl">
 
          <div class="card_text">
 
            <p>
 
              <b>Effet :</b> toutes les bact&eacute;ries non r&eacute;sistantes &agrave; l&rsquo;ampicilline perdent 3 log.
 
            </p>
 
            <p class="go-further fr">
 
            L'ampicilline est un antibiotique de type bact&eacute;ricide : il tue les bact&eacute;ries. Il fait partie de la famille de la p&eacute;nicilline. Cet antibiotique emp&ecirc;che la production du peptidoglycane, un constituant de la paroi des bact&eacute;ries. Pour ce faire, il se fixe sur des enzymes qui participent &agrave; la formation de liaisons entre les mol&eacute;cules du peptidoglycane.
 
  
            </p>
+
    <style>
          </div>
+
      /* CAROUSEL */
        </div>
+
      </div>
+
  
      <div class="card_container" id="full_img14">
+
.carousel{
        <div class="card_img">
+
  position:relative;
          <img src="https://static.igem.org/mediawiki/2017/d/d5/T--INSA-UPS_France--Microbioworld_Media_LBchlo.png" alt="">
+
  overflow: hidden;
        </div>
+
  margin-bottom:20px;
        <div class="card_expl">
+
  margin:0px auto;
          <div class="card_text">
+
}
            <p>
+
              <b>Effet :</b> toutes les bact&eacute;ries non r&eacute;sistantes au chloramph&eacute;nicol ne peuvent plus se diviser.
+
            </p>
+
            <p class="go-further fr">
+
            Le chloramph&eacute;nicol est un antibiotique de type bact&eacute;riostatique : il emp&ecirc;che la division des bact&eacute;ries. Il bloque la production des prot&eacute;ines utilis&eacute;es pour la division.
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
      <div class="card_container" id="full_img15">
 
        <div class="card_img">
 
          <img src="https://static.igem.org/mediawiki/2017/6/69/T--INSA-UPS_France--Microbioworld_Media_LBconta.png" alt="">
 
        </div>
 
        <div class="card_expl">
 
          <div class="card_text">
 
            <p>
 
              <b>Effet :</b> Un champignon s&rsquo;est d&eacute;velopp&eacute; sur le milieu, il a une colonie de (nombre joueur +1) log. Il se divise &agrave; chaque tour de table. Les joueurs peuvent attaquer le champignon pendant leur phase d&rsquo;attaque. S&rsquo;il meurt, le milieu redevient un LB standard. S&rsquo;il atteint 10 log, il gagne la partie ! On ne peut plus changer le milieu de culture, les repiquages permettent de remettre le champignon &agrave; n joueur +1 log.
 
            </p>
 
            <p class="go-further fr">
 
            Les microorganismes sont pr&eacute;sents partout. Le travail du microbiologiste s&rsquo;effectue en condition st&eacute;rile pour &eacute;viter les contaminations non d&eacute;sir&eacute;es. Il arrive quand m&ecirc;me que des contaminants se d&eacute;veloppent sur les bo&icirc;tes de P&eacute;tri. Ces contaminants peuvent alors envahir le milieu.
 
            </p>
 
          </div>
 
        </div>
 
      </div>
 
  
      <div class="card_container" id="full_img16">
+
.w200{
        <div class="card_img">
+
  width:200px;
          <img src="https://static.igem.org/mediawiki/2017/9/9d/T--INSA-UPS_France--Microbioworld_Media_chap.png" alt="">
+
  height:150px;
        </div>
+
}
        <div class="card_expl">
+
          <div class="card_text">
+
            <p>
+
              <b>Effet :</b> seules les bact&eacute;ries &agrave; Gram positif peuvent se diviser.
+
            </p>
+
            <p class="go-further fr">
+
            Le milieu Chapman est un milieu enrichi en sels utilis&eacute; pour l'isolement des bact&eacute;ries &agrave; Gram positif. Outre le fait que seules les bact&eacute;ries &agrave; Gram positif s&rsquo;y d&eacute;veloppent, il permet aussi de r&eacute;v&eacute;ler la pr&eacute;sence de colonies par un marquage color&eacute;. Le crit&egrave;re de diff&eacute;renciation est la fermentation du mannitol (un &eacute;dulcorant naturel qui est utilis&eacute; comme substrat nutritif) qui acidifie le milieu. L&rsquo;acidification est r&eacute;v&eacute;l&eacute;e gr&acirc;ce &agrave; un indicateur qui change de couleur (le rouge de ph&eacute;nol).
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
      <div class="card_container" id="full_img17">
+
.w400{
        <div class="card_img">
+
  width:400px;
          <img src="https://static.igem.org/mediawiki/2017/1/19/T--INSA-UPS_France--Microbioworld_Media_mcc.png" alt="">
+
  height:300px;
        </div>
+
}
        <div class="card_expl">
+
          <div class="card_text">
+
            <p>
+
              <b>Effet :</b> seules les bact&eacute;ries &agrave; Gram n&eacute;gatif peuvent se diviser.
+
            </p>
+
            <p class="go-further fr">
+
            Le milieu McConkey est un milieu pour l'isolement des Gram n&eacute;gatifs. Il contient des agents (cristal violet et sels biliaires) qui freinent le d&eacute;veloppement des bact&eacute;ries &agrave; Gram positif. La fermentation du lactose par ces bact&eacute;ries permet d&rsquo;acidifier le milieu. L&rsquo;acidification est r&eacute;v&eacute;l&eacute;e gr&acirc;ce &agrave; un indicateur color&eacute; (le rouge de ph&eacute;nol) qui permet alors de faciliter de d&eacute;tecter les colonies.
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
      <div class="card_container" id="full_img18">
+
.w500{
        <div class="card_img">
+
  width:500px;
          <img src="https://static.igem.org/mediawiki/2017/b/bb/T--INSA-UPS_France--Microbioworld_Media_min.png" alt="">
+
  height:300px;
        </div>
+
}
        <div class="card_expl">
+
          <div class="card_text">
+
            <p>
+
              <b>Effet :</b> les bact&eacute;ries auxotrophes (qui ne peuvent pas se nourrir sur un environnement pauvre en nutriments) ne se d&eacute;veloppent plus.
+
            </p>
+
            <p class="go-further fr">
+
              Les bact&eacute;ries auxotrophes ont besoin que leur environnement contienne tous les &eacute;l&eacute;ments nutritifs pour se d&eacute;velopper car elles ne sont pas capables de synth&eacute;tiser toutes les mol&eacute;cules qui lui permettent de se d&eacute;velopper. Il peut s&rsquo;agir par exemple de la synth&egrave;se d&rsquo;un acide amin&eacute; ou d&rsquo;un lipide essentiel. Il faut alors ajouter dans le milieu la mol&eacute;cule n&eacute;cessaire &agrave; la croissance.
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
    </div>
+
  
      <section>
+
img.center{
        <h1>Cartes Plasmides</h1>
+
  display:block;
        <p>
+
  text-align:center;
          <b>R&egrave;gles : </b>vous pouvez attacher un plasmide &agrave; votre colonie, il reste attach&eacute; durant toute la partie (sauf effet sp&eacute;cial). Les cartes plasmides procurent des avantages aux colonies qui les contr&ocirc;lent (en attaque, en d&eacute;fense ou en division). Il y a 3 familles de plasmides (rouge, bleu, vert). Vous ne pouvez pas &eacute;quiper deux plasmides de la m&ecirc;me famille dans votre colonie. Si elle poss&egrave;de un plasmide et que vous voulez l&rsquo;&eacute;quiper avec un autre plasmide de la m&ecirc;me famille, tirez au sort celui que vous gardez, et d&eacute;faussez l&rsquo;autre plasmide.
+
}
        </p>
+
        <p class="go-further fr">
+
          Les plasmides sont de petites mol&eacute;cules d'ADN de forme circulaire. Comme l&rsquo;ADN chromosomique, ils poss&egrave;dent des g&egrave;nes, qui donnent &agrave; la bact&eacute;rie poss&eacute;dant ce plasmide de nouvelles capacit&eacute;s. Les plasmides sont capables de se r&eacute;pliquer dans les bact&eacute;ries, c&rsquo;est-&agrave;-dire de provoquer la synth&egrave;se d&rsquo;un autre plasmide similaire gr&acirc;ce aux prot&eacute;ines pr&eacute;sentes &agrave; l&rsquo;int&eacute;rieur de la bact&eacute;rie. La r&eacute;plication des plasmides est possible gr&acirc;ce &agrave; une s&eacute;quence d&rsquo;ADN particuli&egrave;re appel&eacute;e ORI (pour origine de r&eacute;plication) sur laquelle les prot&eacute;ines de la bact&eacute;ries se fixent pour commencer la r&eacute;plication du plasmide. Il existe plusieurs familles d&rsquo;ORI et les plasmides ayant le m&ecirc;me ORI (donc de la m&ecirc;me famille) ne peuvent pas coexister dans une bact&eacute;rie, l&rsquo;un d&rsquo;eux sera al&eacute;atoirement perdu. On appelle ce ph&eacute;nom&egrave;ne l&rsquo;incompatibilit&eacute; plasmidique.
+
        </p>
+
      </section>
+
  
      <div>
+
.carousel img{
      <table class="cards_table">
+
  width:100%;
        <tr>
+
  position:absolute;
          <td id="img20" ><img src="https://static.igem.org/mediawiki/2017/8/8d/T--INSA-UPS_France--Microbioworld_Cards_fr_pTOX-min.png" alt=""></td>
+
  left:100%;
          <td id="img21" ><img src="https://static.igem.org/mediawiki/2017/9/9c/T--INSA-UPS_France--Microbioworld_Cards_fr_pBIO-min.png" alt=""></td>
+
  z-index:20;
          <td id="img22" ><img src="https://static.igem.org/mediawiki/2017/8/8c/T--INSA-UPS_France--Microbioworld_Cards_fr_pRK-min.png" alt=""></td>
+
}
          <td id="img23" ><img src="https://static.igem.org/mediawiki/2017/c/c6/T--INSA-UPS_France--Microbioworld_Cards_fr_pSYM-min.png" alt=""></td>
+
          <td id="img24" ><img src="https://static.igem.org/mediawiki/2017/3/3b/T--INSA-UPS_France--Microbioworld_Cards_fr_pQS-min.png" alt=""></td>
+
          <td id="img25" ><img src="https://static.igem.org/mediawiki/2017/4/42/T--INSA-UPS_France--Microbioworld_Cards_fr_pSST6-min.png" alt=""></td>
+
          <td id="img26" ><img src="https://static.igem.org/mediawiki/2017/4/42/T--INSA-UPS_France--Microbioworld_Cards_fr_pBR322-min.png" alt=""></td>
+
          <td id="img27" ><img src="https://static.igem.org/mediawiki/2017/a/af/T--INSA-UPS_France--Microbioworld_Cards_fr_pSB1C3-min.png" alt=""></td>
+
          <td id="img28" ><img src="https://static.igem.org/mediawiki/2017/e/e6/T--INSA-UPS_France--Microbioworld_Cards_fr_pADAPT-min.png" alt=""></td>
+
          <td id="img29" ><img src="https://static.igem.org/mediawiki/2017/e/e6/T--INSA-UPS_France--Microbioworld_Cards_fr_pPAM-min.png" alt=""></td>
+
          <td id="img30" ><img src="https://static.igem.org/mediawiki/2017/b/b7/T--INSA-UPS_France--Microbioworld_Cards_fr_pCHIADE-min.png" alt=""></td>
+
        </tr>
+
      </table>
+
     
+
      <div class="card_container active" id="full_img20">
+
        <div class="card_img">
+
          <img src="https://static.igem.org/mediawiki/2017/a/ae/T--INSA-UPS_France--Microbioworld_Cards_fr_pTOX.png" alt="">
+
        </div>
+
        <div class="card_expl">
+
          <div class="card_text">
+
            <p>
+
              <b>Effet :</b> lorsque vous attaquez une colonie, elle ne peut pas se diviser au prochain tour.
+
            </p>
+
            <p class="go-further fr">
+
            Le cytosquelette est un ensemble de filaments qui permet &agrave; la bact&eacute;rie de maintenir sa taille, ses propri&eacute;t&eacute;s m&eacute;caniques et son organisation interne. Il participe activement &agrave; la division. La toxine YeeV inhibe l&rsquo;enzyme qui assemble les filaments du cytosquelette, ce qui emp&ecirc;che la division. Chez les organismes eucaryotes comme l&rsquo;homme, un toxine similaire, la phallo&iuml;dine paralyse la formation du cytosquelette. Cette toxine provient du champignon Amanite phallo&iuml;de.
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
      <div class="card_container" id="full_img21">
+
.carousel img.active, .carousel img.only{
        <div class="card_img">
+
  left:0;
          <img src="https://static.igem.org/mediawiki/2017/6/61/T--INSA-UPS_France--Microbioworld_Cards_fr_pBIO.png" alt="">
+
  z-index:10;
        </div>
+
}
        <div class="card_expl">
+
          <div class="card_text">
+
            <p>
+
              <b>Effet :</b> Vous perdez seulement 1 log lorsque vous subissez de d&eacute;g&acirc;ts.
+
            </p>
+
            <p class="go-further fr">
+
            Les microorganismes sont capables de se d&eacute;velopper en formant des amas compacts et structur&eacute;s qu&rsquo;on appelle les biofilms. Ce mode de vie permet aux bact&eacute;ries qui le composent de r&eacute;agir aux stress externes (attaque physique, acidit&eacute;, toxine, antibiotique...) comme un tissu uniforme en mettant en place un syst&egrave;me complexe de communication interne. C&rsquo;est une d&eacute;fense tr&egrave;s efficace pour se prot&eacute;ger d&rsquo;un environnement hostile.
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
      <div class="card_container" id="full_img22">
+
.indicators{ 
        <div class="card_img">
+
  position:absolute;
          <img src="https://static.igem.org/mediawiki/2017/5/53/T--INSA-UPS_France--Microbioworld_Cards_fr_pRK.png" alt="">
+
  bottom:5px;
        </div>
+
  left:0;
        <div class="card_expl">
+
  right:0;
          <div class="card_text">
+
  text-align:center;
            <p>
+
  z-index:30;
              <b>Effet :</b> Lors d&rsquo;une attaque, vous pouvez voler une carte plasmide &agrave; votre adversaire (une fois dans la partie). Mettez-la dans votre main, vous pouvez alors avoir jusqu&rsquo;&agrave; 4 cartes en mains.
+
            </p>
+
            <p class="go-further fr">
+
            La conjugaison est un m&eacute;canisme qui permet aux bact&eacute;ries de se transf&eacute;rer des plasmides. Une bact&eacute;rie donneuse poss&egrave;de un plasmide, et une bact&eacute;rie r&eacute;ceptrice capable d&rsquo;initier la conjugaison recevra le plasmide de la donneuse. Dans le jeu, le fait de pouvoir initier une conjugaison est &nbsp;repr&eacute;sent&eacute; par la carte &ldquo;plasmide conjugaison&rdquo;.
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
      <div class="card_container" id="full_img23">
+
}
        <div class="card_img">
+
          <img src="https://static.igem.org/mediawiki/2017/3/33/T--INSA-UPS_France--Microbioworld_Cards_fr_pSYM.png" alt="">
+
        </div>
+
        <div class="card_expl">
+
          <div class="card_text">
+
            <p>
+
              <b>Effet :</b> Choisissez une colonie avec laquelle vous serez en symbiose. A chaque fois que vous ou votre symbiote se divise, l&rsquo;autre se divise aussi. Vous n'&ecirc;tes pas alli&eacute;s pour autant! Cet effet ne prend pas en compte les boost de division (fructose, xylose, glucose ou effet de colonie). Si le milieu de culture emp&ecirc;che votre symbiote de se diviser et que vous lancez une division, il avance quand m&ecirc;me d&rsquo;un log (et inversement).
+
            </p>
+
            <p class="go-further fr">
+
            Au cours du temps, les organismes vivants ont mis en place diff&eacute;rentes strat&eacute;gies pour mieux s&rsquo;adapter &agrave; des conditions de vie particuli&egrave;res. Certains organismes ont ainsi d&eacute;velopp&eacute; des associations symbiotiques dans lesquelles chacun des organismes impliqu&eacute;s procure un avantage &agrave; l&rsquo;autre.
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
      <div class="card_container" id="full_img24">
+
.indicators div{
        <div class="card_img">
+
  display:inline-block;
          <img src="https://static.igem.org/mediawiki/2017/f/fb/T--INSA-UPS_France--Microbioworld_Cards_fr_pQS.png" alt="">
+
  border:solid white 1px;
        </div>
+
  width:8px;
        <div class="card_expl">
+
  height:8px;
          <div class="card_text">
+
  border-radius: 8px;
            <p>
+
      -moz-box-shadow: 1px 1px 1px gray;
              <b>Effet :</b> Vous ne pouvez pas subir deux attaques cons&eacute;cutives.
+
    -webkit-box-shadow: 1px 1px 1px gray;
            </p>
+
    -o-box-shadow: 1px 1px 1px gray;
            <p class="go-further fr">
+
    -ms-box-shadow: 1px 1px 1px gray;
            Pour une colonie bact&eacute;rienne, il est indispensable de d&eacute;tecter et de se faire d&eacute;tecter par les autre bact&eacute;ries qui partagent le m&ecirc;me environnement. Pour cela, elles produisent des mol&eacute;cules de reconnaissance qui sont capt&eacute;es par les autres bact&eacute;ries. Ainsi, en fonction des mol&eacute;cules qu&rsquo;elle capte, une colonie &ldquo;sait&rdquo; quelles sont les autres bact&eacute;ries qui l&rsquo;entourent. Ce ph&eacute;nom&egrave;ne, appel&eacute; le quorum sensing, permet aux bact&eacute;ries d&rsquo;activer diff&eacute;rents m&eacute;canismes pour d&eacute;stabiliser les bact&eacute;ries comp&eacute;titrices ou mieux se d&eacute;fendre contre elles.
+
  box-shadow: 1px 1px 1px gray;
            </p>
+
}
          </div>
+
.indicators .active{
        </div>
+
  background:white;
      </div>
+
}
 +
    </style>
  
      <div class="card_container" id="full_img25">
+
    <style>
        <div class="card_img">
+
      .category-content.visible{
          <img src="https://static.igem.org/mediawiki/2017/d/de/T--INSA-UPS_France--Microbioworld_Cards_fr_pSST6.png" alt="">
+
         display:block;
         </div>
+
      }
        <div class="card_expl">
+
      .category-content{
          <div class="card_text">
+
        display: none;
            <p>
+
      }
              <b>Effet :</b> Vous infligez deux fois plus de d&eacute;g&acirc;ts &agrave; chaque attaque.
+
    </style>
            </p>
+
            <p class="go-further fr">
+
            Certaines bact&eacute;ries poss&egrave;dent des syst&egrave;mes qui leur permettent de transporter des mol&eacute;cules de l&rsquo;int&eacute;rieur de la bact&eacute;rie vers le milieu ext&eacute;rieur ou m&ecirc;me directement &agrave; l&rsquo;int&eacute;rieur de bact&eacute;ries comp&eacute;titrices. Le syst&egrave;me de s&eacute;cr&eacute;tion de type VI (SST6) est l&rsquo;un de ces syst&egrave;mes. Aussi surnomm&eacute; &ldquo;arbal&egrave;te mol&eacute;culaire&rdquo;, il est capable d&rsquo;injecter des mol&eacute;cules toxiques directement dans la bact&eacute;rie cible!
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
      <div class="card_container" id="full_img26">
+
   
        <div class="card_img">
+
          <img src="https://static.igem.org/mediawiki/2017/2/2e/T--INSA-UPS_France--Microbioworld_Cards_fr_pBR322.png" alt="">
+
        </div>
+
        <div class="card_expl">
+
          <div class="card_text">
+
            <p>
+
              <b>Effet :</b> votre colonie n&rsquo;est plus affect&eacute;e par les effets de l&rsquo;ampicilline.
+
            </p>
+
            <p class="go-further fr">
+
              Ce plasmide contient un g&egrave;ne de r&eacute;sistance &agrave; l&rsquo;ampicilline qui permet de produire une enzyme (la &beta;-lactamase) capable de couper les mol&eacute;cules d&rsquo;ampicilline, leur faisant perdre l&rsquo;effet antibiotique.
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
      <div class="card_container" id="full_img27">
+
    <!-- *********** -->
        <div class="card_img">
+
    <!-- *********** -->
          <img src="https://static.igem.org/mediawiki/2017/5/5a/T--INSA-UPS_France--Microbioworld_Cards_fr_pSB1C3.png" alt="">
+
    <!-- S C H O O L -->
        </div>
+
    <!-- *********** -->
        <div class="card_expl">
+
    <!-- *********** -->
          <div class="card_text">
+
            <p>
+
              <b>Effet :</b> votre colonie n&rsquo;est plus affect&eacute;e par les effets du chloramph&eacute;nicol.
+
            </p>
+
            <p class="go-further fr">
+
              Ce plasmide contient un g&egrave;ne de r&eacute;sistance au chloramph&eacute;nicol. Le g&egrave;ne de r&eacute;sistance caf permet de produire une enzyme, (l&rsquo;acetyltransf&eacute;rase) capable d&rsquo;ajouter des groupements chimiques sur les mol&eacute;cules de chloramph&eacute;nicol. Ces modifications inactivent l&rsquo;antibiotique.
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
      <div class="card_container" id="full_img28">
+
    <style>
        <div class="card_img">
+
      .content-right{
          <img src="https://static.igem.org/mediawiki/2017/0/09/T--INSA-UPS_France--Microbioworld_Cards_fr_pADAPT.png" alt="">
+
         width:80%;
         </div>
+
         margin-left:20%;
         <div class="card_expl">
+
      }
          <div class="card_text">
+
      .summary-left{
            <p>
+
        width:18%;
              <b>Effet :</b> vous pouvez piocher une carte de plus apr&egrave;s votre phase d&rsquo;attaque.
+
        float:left;
            </p>
+
      }
            <p class="go-further fr">
+
      .summary-left{
            Quand une colonie bact&eacute;rienne est en contact avec d&rsquo;autres bact&eacute;ries, elle doit constamment &eacute;laborer de nouvelles strat&eacute;gies pour contourner les attaques ou la pression exerc&eacute;e par ces comp&eacute;titrices. Dans un tel contexte, les bact&eacute;ries qui s&rsquo;adaptent vite aux strat&eacute;gies adverses sont avantag&eacute;es. L&rsquo;adaptation se manifeste par le gain d&rsquo;une nouvelle fonction / d&rsquo;un nouveau g&egrave;ne (dans le jeu cela se traduit par l&rsquo;action de piocher une carte).
+
        cursor:pointer;
            </p>
+
      }
          </div>
+
      .summary-left.summary-fixed{
         </div>
+
        position:fixed;
       </div>
+
        top:140px;
 +
         width:10%;
 +
       }
 +
    </style>
  
      <div class="card_container" id="full_img29">
+
    <div class="category-content visible" id="1">
        <div class="card_img">
+
      <div class="summary-left">
           <img src="https://static.igem.org/mediawiki/2017/7/7a/T--INSA-UPS_France--Microbioworld_Cards_fr_pPAM.png" alt="">
+
        <ul>
        </div>
+
           <li data-number="1" style="list-style-type: none;">School Education</li>
        <div class="card_expl">
+
          <li data-number="2">Rising curiosity</li>
           <div class="card_text">
+
           <li data-number="3">Questions</li>
            <p>
+
          <li data-number="4">Representations</li>
              <b>Effet :</b> lors de votre phase d&rsquo;attaque, votre colonie produit des peptides antimicrobiens (AMP). Vous pouvez envoyer &nbsp;ces AMP &agrave; une autre colonie cible, elle perd 1 log.
+
          <li data-number="5">Analysis</li>
 
+
          <li data-number="6">Workshops</li>
            </p>
+
          <li data-number="7">Results</li>
            <p class="go-further fr">
+
           <li data-number="8">Conclusions</li>
            Ce plasmide contient des peptides antimicrobiens capable de former des pores dans la membrane des bact&eacute;ries. Le cytoplasme (l&rsquo;int&eacute;rieur de la bact&eacute;rie) se d&eacute;verse alors &agrave; l&rsquo;ext&eacute;rieur de la bact&eacute;rie et celle-ci meurt. Ces peptides antimicrobiens sont souvent produit par d&rsquo;autres organismes pour lutter contre des infections de bact&eacute;ries pathog&egrave;nes.
+
         </ul>
            </p>
+
           </div>
+
         </div>
+
 
       </div>
 
       </div>
 +
    <div class="content-right">
 +
    <section class="school-subcat" id="sc1">
 +
      <h1>School Education</h1>
 +
      <p>
 +
        We&rsquo;ve been involved in schools classes, with children between the age of 7 and 11 years old in elementary schools.
 +
      </p>
 +
      <p>
 +
        The main goals of these interventions were the <b>discovery of  biology and research at school</b> with two workshops: <b>Microorganisms and their environment</b> and <b>growth of microorganisms</b> on a Petri dish.
 +
      </p>
 +
      <p>
 +
        We tried to build a guide for future iGEMers to be inspired by our pedagogical project:
 +
      </p>
 +
      <object data="https://static.igem.org/mediawiki/2017/0/0a/T--INSA-UPS_France--HP-PE_School_Guide-to-build-a-pedagogical-project-in-science-_-V4.pdf" type="application/pdf" width="550px" height="700px" title="Guide to build a pedagogical project in science"></object>
 +
      <p>
 +
        Our motivation was to share our passion and knowledge about biology and to raise curiosity of the pupils about microorganisms. We were also very interested in seeing what representation children have on microorganisms, helping them improving their knowledge about microorganisms and discussing about benefits and risks of microorganisms on our health.
 +
      </p>
 +
      <p>
 +
        We worked with Mrs. Matricon, Mrs Bach and Mrs. Durand, respectively teachers at  &ldquo;Lakanal&rdquo; and &ldquo;Patte d&rsquo;Oie&rdquo; schools in Toulouse.
 +
      </p>
 +
      <div class="carousel center w500" >
  
      <div class="card_container" id="full_img30">
+
          <div class="indicators">
        <div class="card_img">
+
            <div class="active" id="ind_img6"></div>
          <img src="https://static.igem.org/mediawiki/2017/d/d0/T--INSA-UPS_France--Microbioworld_Cards_fr_pCHIADE.png" alt="">
+
            <div id="ind_img7"></div>
        </div>
+
            <div id="ind_img8"></div>
        <div class="card_expl">
+
             <div id="ind_img9"></div>
          <div class="card_text">
+
            <p>
+
              <b>Effets :</b>  
+
             </p>
+
            <ul>
+
              <li>Avec 1 plasmide chiad&eacute;, rien ne se passe</li>
+
              <li>Avec 2 plasmides chiad&eacute;s, vous pouvez faire deux actions au choix pendant votre tour (ce peut deux fois la m&ecirc;me action)</li>
+
              <li>Avec 3 plasmides chiad&eacute;s vous pouvez faire trois actions au choix.</li>
+
            </ul>
+
            <p class="go-further fr">
+
            En biologie synth&eacute;tique, &ldquo;chiad&eacute;&rdquo; d&eacute;signe un syst&egrave;me g&eacute;n&eacute;tique complexe hautement r&eacute;gul&eacute; qui conf&egrave;re aux bact&eacute;ries des caract&eacute;ristiques badass. La biologie synth&eacute;tique permet de cr&eacute;er de nouvelles fonctions dans le vivant ou de transposer certaines fonctions d&rsquo;un organisme &agrave; l&rsquo;autre. Cette discipline r&eacute;pond &agrave; un cahier des charges pr&eacute;cis et r&eacute;glement&eacute;, par exemple pour pr&eacute;venir la diss&eacute;mination des microorganismes cr&eacute;&eacute;s en laboratoire.
+
            </p>
+
 
           </div>
 
           </div>
        </div>
 
      </div>
 
      </div>
 
  
      <section style="background:none;">
+
           <img src="https://static.igem.org/mediawiki/2017/6/60/T--INSA-UPS_France--Engagement_school1.JPG" alt="" class="active" id="img6" data-target="img7">
        <h1>Cartes &eacute;v&egrave;nements</h1>
+
           <img src="https://static.igem.org/mediawiki/2017/7/79/T--INSA-UPS_France--Engagement_school2.JPG" alt="" id="img7" data-target="img8">
      </section>
+
           <img src="https://static.igem.org/mediawiki/2017/4/40/T--INSA-UPS_France--Engagement_school3.JPG" alt="" id="img8" data-target="img9">
 
+
           <img src="https://static.igem.org/mediawiki/2017/b/bd/T--INSA-UPS_France--Engagement_school4.JPG" alt="" id="img9" data-target="img6">    
      <div>
+
      <table class="cards_table">
+
        <tr>
+
           <td id="img40" ><img src="https://static.igem.org/mediawiki/2017/c/c4/T--INSA-UPS_France--Microbioworld_Cards_fr_repiqu-min.png" alt=""></td>
+
          <td id="img41" ><img src="https://static.igem.org/mediawiki/2017/a/ae/T--INSA-UPS_France--Microbioworld_Cards_fr_bvcs-min.png" alt=""></td>
+
           <td id="img42" ><img src="https://static.igem.org/mediawiki/2017/e/e0/T--INSA-UPS_France--Microbioworld_Cards_fr_trait-min.png" alt=""></td>
+
          <td id="img43" ><img src="https://static.igem.org/mediawiki/2017/1/10/T--INSA-UPS_France--Microbioworld_Cards_fr_sugar-min.png" alt=""></td>
+
           <td id="img44" ><img src="https://static.igem.org/mediawiki/2017/b/b8/T--INSA-UPS_France--Microbioworld_Cards_fr_trans-min.png" alt=""></td>
+
          <td id="img45" ><img src="https://static.igem.org/mediawiki/2017/a/a1/T--INSA-UPS_France--Microbioworld_Cards_fr_Att-min.png" alt=""></td>
+
           <td id="img46" ><img src="https://static.igem.org/mediawiki/2017/2/2e/T--INSA-UPS_France--Microbioworld_Cards_fr_immuno-min.png" alt=""></td>
+
        </tr>
+
      </table>
+
     
+
      <div class="card_container active" id="full_img40">
+
        <div class="card_img">
+
          <img src="https://static.igem.org/mediawiki/2017/d/dd/T--INSA-UPS_France--Microbioworld_Cards_fr_repiqu.png" alt="">
+
        </div>
+
        <div class="card_expl">
+
          <div class="card_text">
+
            <p>
+
              <b>Effet :</b> Le milieu de culture change ! Retournez la premi&egrave;re carte de la pile de milieux, elle devient le milieu de culture pour toutes les bact&eacute;ries en jeu. Cette carte doit &ecirc;tre jou&eacute;e au tour du joueur.
+
            </p>
+
            <p class="go-further fr">
+
              En laboratoire le repiquage consiste &agrave; prendre les bact&eacute;ries pr&eacute;sentes sur un milieu et &agrave; les d&eacute;poser sur un nouveau milieu.
+
            </p>
+
          </div>
+
        </div>
+
 
       </div>
 
       </div>
 +
    </section>
  
 +
    <section class="school-subcat" id="sc2">
 +
      <h1>Rising curiosity</h1>
 +
      <p>
 +
        The introduction step was led by the teacher one week before the intervention. It was dedicated to give a meaning to further teaching, to motivate the pupils, to rise their curiosity, to induce their amazement and their desire to know.
 +
      </p>
 +
      <p>
 +
        4 types of introduction are possible (see the diagram).
 +
      </p>
 +
      <p>
 +
        The observation and the technical challenges were adapted to our pedagogical project. For instance, here are some scenarii to introduce microorganisms: why is it important to wash hands before eating? Why are we sick? How can we observe microorganisms?
 +
      </p>
 +
    </section>
  
      <div class="card_container" id="full_img41">
+
    <section class="school-subcat" id="sc3">
         <div class="card_img">
+
      <h1>Emergence of questionnements</h1>
          <img src="https://static.igem.org/mediawiki/2017/c/c6/T--INSA-UPS_France--Microbioworld_Cards_fr_bvcs.png" alt="">
+
      <p>
        </div>
+
         The goal is to set up a transition between amazement and reflection in order to involve the pupils in an investigation and research procedure. A bunch of questions results from this step, so the teacher will organise, regroup and sometimes refute them to enable the emergence of a problem or a situation. The main questions were:
        <div class="card_expl">
+
      </p>
          <div class="card_text">
+
    </section>
            <p>
+
    <style>
              <b>Effet :</b>  &agrave; partir du moment o&ugrave; cette carte est jou&eacute;e, les joueurs s'affrontent par &eacute;quipe (&eacute;quipe &ldquo;bacilles&rdquo; contre &eacute;quipe &ldquo;coques&rdquo;). Cette carte dure jusqu&rsquo;&agrave; l&rsquo;extermination d&rsquo;une des deux &eacute;quipes.
+
      section{
 +
        text-align: center;
 +
      }
 +
      section img{
 +
        width: 100%;
 +
        max-width: 800px;
 +
      }
 +
    </style>
 +
    <section style="background: none; margin:0px;">
 +
      <img src="https://static.igem.org/mediawiki/2017/8/8d/T--INSA-UPS_France--HP-PE_School_Children-questions-1.png" alt="">
 +
    </section>
  
            </p>
+
    <section class="school-subcat" id="sc4">
            <p class="go-further fr">
+
      <h1>A first representation of micro-organisms</h1>
              Bacille et coque repr&eacute;sentent des morphotypes de bact&eacute;ries. Un bacille est une bact&eacute;rie de forme allong&eacute;e dite &laquo; en b&acirc;tonnet &raquo;, et la forme cocci ou coque est ronde. Cette carte est avant tout destin&eacute;e &agrave; illustrer la variabilit&eacute; de forme des bact&eacute;ries! Dans la nature, les bact&eacute;ries n&rsquo;ont pas d&rsquo;affinit&eacute; selon leur morphotype.
+
      <p>
            </p>
+
        The representations are the ideal way to figure out the knowledge of the pupils thanks to their experience of the real world, their social and affective life. Those representations provide the first answer given by the pupils to investigation questions.
          </div>
+
      </p>
         </div>
+
      <p>
 +
        A representation is also a structure that contributes to integrate new learning. Those structures had to be transformed so that the pupils better appropriate/benefit from the world. According to Piaget those transformations are called &ldquo;accommodation&rdquo; (Depover, Christian et al.:  <a href=" http://ute.umh.ac.be/dutice/uv6a/">Les mod&egrave;les d'enseignement et d'apprentissage</a>).
 +
      </p>
 +
      <p>
 +
        We analysed the representations to figure out how to overcome the possible difficulties and obstacles that could occur during the session.
 +
      </p>
 +
      <p>
 +
         This work is based on the work of three classes of two schools of CE2, CM1 and CM2 (equivalent to 3th to 5th US grade) for a total amount of 72 pupils. The pupils had to draw a microbe and answer 3 questions: Where can we find microbes? What do they do? How to see them?
 +
      </p>
 +
      <h2>Visual representations</h2>
 +
      <div style="display:table;background:white;margin:0px;margin-left: -12.5%;text-align: center; width: 125%;">
 +
        <img style="width:100%; max-width:none;" src="https://static.igem.org/mediawiki/2017/b/b0/T--INSA-UPS_France--HP-PE_School_drawingS.png" alt="">
 
       </div>
 
       </div>
 +
      <p>
 +
        We found two main conceptions of microorganisms:
 +
      </p>
 +
      <ul>
 +
        <li>A representation that assimilates the microorganism to an animal.</li>
 +
        <li>A representation built from the pictures watched by the children (Barbapapa, kawaï, pokemons, cartoons, etc.) which have in common a circular or geometrical form with eyes and mouth.</li>
 +
      </ul>
 +
      <p>
 +
        It is interesting to see that some of those representations are close to microorganisms. However, a lot of pupils represent microorganisms with legs and sometimes eyes. Some pupils also drew a speech bubble to indicate that microbes are talking or thinking.
 +
      </p>
  
 +
    </section>
  
       <div class="card_container" id="full_img42">
+
    <style>
        <div class="card_img">
+
       .black-board{
          <img src="https://static.igem.org/mediawiki/2017/0/08/T--INSA-UPS_France--Microbioworld_Cards_fr_trait.png" alt="">
+
        background-color:#0c343d;
        </div>
+
        color:white;
        <div class="card_expl">
+
        text-align: center;
          <div class="card_text">
+
        margin-top:10px;
            <p>
+
        margin-bottom: 10px;
              <b>Effet :</b> Chaque colonie pathog&egrave;ne de l'homme perd 2 log. D&eacute;faussez ensuite cette carte.
+
        border-radius: 0px;
            </p>
+
        border:5px solid #e2cd98;
            <p class="go-further fr">
+
      }
              Les agents antiseptiques et les antibiotiques sont utilis&eacute;s pour prot&eacute;ger l&rsquo;organisme en cas de blessure ou d&rsquo;infection. Ils permettent de r&eacute;duire les risques de prolif&eacute;ration de bact&eacute;ries. Cependant, l'arr&ecirc;t du traitement peut permettre &agrave; la bact&eacute;rie de r&eacute;infecter un patient, notamment quand son syst&egrave;me immunitaire est affaibli.
+
    </style>
            </p>
+
    <section class="black-board">
          </div>
+
      Where can we find microbes?
        </div>
+
    </section>
      </div>
+
   
 +
    <section style="background:none;margin:0px">
 +
      <img src="https://static.igem.org/mediawiki/2017/4/40/T--INSA-UPS_France--HP-PE_School_Children-questions-2.png" alt="">
 +
    </section>
  
 +
    <section class="black-board">
 +
      What is their purpose?
 +
    </section>
 +
    <section style="background:none;margin:0px">
 +
      <img src="https://static.igem.org/mediawiki/2017/8/8a/T--INSA-UPS_France--HP-PE_School_Children-questions-3.png" alt="">
 +
    </section>
  
      <div class="card_container" id="full_img43">
 
        <div class="card_img">
 
          <img src="https://static.igem.org/mediawiki/2017/e/e7/T--INSA-UPS_France--Microbioworld_Cards_fr_sugar.png" alt="">
 
        </div>
 
        <div class="card_expl">
 
          <div class="card_text">
 
            <p>
 
              <b>Effet :</b> lors de votre prochaine division, votre colonie gagne 1 log de bact&eacute;ries suppl&eacute;mentaires (+ 2 log). D&eacute;faussez la carte apr&egrave;s la division.
 
            </p>
 
            <p class="go-further fr">
 
              Le fructose, le galactose et le xylose fournissent une source suppl&eacute;mentaire de carbone pour la colonie et am&eacute;liorent ainsi sa croissance. Ce sont sont des sucres tr&egrave;s courants dans la nature. <br />
 
              Le glucose est un des sucres les plus efficaces pour soutenir la croissance de nombreuses bact&eacute;ries. Pour optimiser sa consommation, elles ont notamment mis en place des syst&egrave;mes de r&eacute;gulation emp&ecirc;chant l&rsquo;utilisation d&rsquo;autres sources de carbone en pr&eacute;sence de glucose.
 
            </p>
 
          </div>
 
        </div>
 
      </div>
 
  
 +
    <section class="school-subcat" id="sc5">
 +
      <h1>Conclusions about representations</h1>
 +
      <p>
 +
        <b>Zoomorphism</b> is an obstacle to their understanding. It was thus important to clarify the morphological differences between microorganisms and animals (including insects) and their relative size (the lice are not microbes).
 +
      </p>
 +
      <p>
 +
        The concept of <b>hygiene</b> to protect oneself against microorganisms is well known by the pupils. Nevertheless it was necessary to insist on the presence of microorganisms regardless of hygiene, on their roles in the body (digestion, protection), on their essential action on the environment (degradation of organic substances)  and their intervention in the production of bread, wine and dairy products (yoghurts, cheese,…).
 +
      </p>
 +
      <p>
 +
        It was important to give a precise <b>order of magnitude</b> concerning the microorganisms and the growing magnificence to set up on a microscope in order to observe the microorganisms. There was a need to present the Petri dishes we prepared for the session and also their use to observe the microorganisms in the environment of the pupils.
 +
      </p>
 +
      <p>
 +
        Those representations were compared to the representations built at the end of the pedagogical sequence.
 +
      </p>
 +
    </section>
  
      <div class="card_container" id="full_img44">
+
    <style>
         <div class="card_img">
+
         .workshop-img{
           <img src="https://static.igem.org/mediawiki/2017/1/14/T--INSA-UPS_France--Microbioworld_Cards_fr_trans.png" alt="">
+
           cursor: pointer;
         </div>
+
          display: table-cell;
         <div class="card_expl">
+
          border:solid 3px transparent;
           <div class="card_text">
+
          z-index:50;
            <p>
+
        }
              <b>Effet :</b> jouez le transposon sur le plasmide d&rsquo;un de vos adversaires, il est imm&eacute;diatement d&eacute;fauss&eacute;.
+
        .workshop-img:hover, .workshop-img.active-workshop{
            </p>
+
          z-index:100;
            <p class="go-further fr">
+
          border:solid 5px #eee ;
              Tout comme les plasmides, les transposons sont des &eacute;l&eacute;ments g&eacute;n&eacute;tiques mobiles. Ils peuvent s&rsquo;exciser et se r&eacute;int&eacute;grer ailleurs dans le g&eacute;nome bact&eacute;rien (sur l&rsquo;ADN chromosomique ou sur un plasmide). Leur int&eacute;gration peut cr&eacute;er des mutations (qui peuvent conduire &agrave; un malfonctionnement du g&egrave;ne). Ils sont pr&eacute;sents chez tous les organismes vivants et sont consid&eacute;r&eacute;s comme des puissants vecteurs d&rsquo;&eacute;volution des esp&egrave;ces.
+
         }
            </p>
+
         .workshop-img img{
           </div>
+
           width:100%;
         </div>
+
        }
      </div>
+
        .workshop-descr{
 +
          display:none;
 +
          margin-top:0px;
 +
        }
 +
        .workshop-descr.visible-workshop{
 +
          display:block;
 +
        }
 +
        section h3{
 +
          font-family: "Quicksand", sans-serif;
 +
          font-weight:700;
 +
          text-align: left;
 +
           font-style:italic;
 +
         }
  
 +
      </style>
  
      <div class="card_container" id="full_img45">
+
    <section class="school-subcat" id="sc6">
         <div class="card_img">
+
      <h1>Learning by doing</h1>
           <img src="https://static.igem.org/mediawiki/2017/1/1c/T--INSA-UPS_France--Microbioworld_Cards_fr_Att.png" alt="">
+
      <p>
        </div>
+
         We expanded from the representation work and from the pupils questioning to select a statement: <b>Where microorganisms can be found? How can we do to show their presence?</b> We provided to the pupils a &ldquo;Little laboratory report&rdquo; as a workbook for investigation and to keep a written record. It also introduced them the daily life of scientists with the need to write everything down.
        <div class="card_expl">
+
      </p>
          <div class="card_text">
+
      <p>
            <p>
+
        We started by highlighting an important point: commonly, people talk about microorganisms using the word &ldquo;microbes&rdquo;, which is quite vernacular; it gives a negative and restrictive image of microorganisms. As we were in science class, we needed to use the word &ldquo;micro-organisms&rdquo; instead of the word &ldquo;microbes&rdquo;.
               <b>Effet :</b> Choisissez le c&ocirc;t&eacute; par lequel se propagent les phages. L&rsquo;attaque de phages vous fait perdre 1 log, 2 log &agrave; votre voisin, et 3 log &agrave; son voisin. D&eacute;faussez ensuite cette carte.
+
      </p>
            </p>
+
        <p>
            <p class="go-further fr">
+
          <b><i>Click on one of the workshops to know more about it!</i></b>
              Les phages sont des virus qui ciblent les bact&eacute;ries. Ils sont compos&eacute;s d&rsquo;une structure prot&eacute;ique qui contient leur ADN et leur permet de se fixer sur leur bact&eacute;rie cible. Leur ADN est ensuite inject&eacute; dans la bact&eacute;rie cible o&ugrave; ils vont se r&eacute;pliquer et engendrer la production de nouveaux phages. Ceci peut entra&icirc;ner la lyse (mort) de la bact&eacute;rie qui lib&egrave;re les phages dans le milieu o&ugrave; ils peuvent alors infecter de nouvelles bact&eacute;ries.
+
        </p>
             </p>
+
        <div style="margin:0px;margin-left: -12.5%;text-align: center; width: 125%;">
 +
           <!-- img workshops -->
 +
          <div style="table-layout:fixed; display:table;border-collapse: collapse;">
 +
            <div class="workshop-img" data-target="10">
 +
              <img src="https://static.igem.org/mediawiki/2017/archive/b/b0/20171007185416%21T--INSA-UPS_France--HP-PE_School_workshop-1.png" alt="">
 +
            </div>
 +
            <div class="workshop-img" data-target="11">
 +
               <img src="https://static.igem.org/mediawiki/2017/archive/a/ab/20171007185335%21T--INSA-UPS_France--HP-PE_School_workshop-2.png" alt="">
 +
             </div>
 
           </div>
 
           </div>
 
         </div>
 
         </div>
      </div>
 
  
 
+
        <div class="workshop-descr" id="workshop-10">
      <div class="card_container" id="full_img46">
+
          <h2>
        <div class="card_img">
+
            Workshop 1:  Microorganisms and their environment
           <img src="https://static.igem.org/mediawiki/2017/b/b7/T--INSA-UPS_France--Microbioworld_Cards_fr_immuno.png" alt="">
+
           </h2>
 +
          <p>
 +
            Before launching the experiment, it seemed necessary to us to do a documentation workshop. The goal was to provide elements for the representation of microorganisms: the size (working with maths concept like the scale and the enlargement factor), their visual aspects and their environment.
 +
          </p>   
 +
          <h3>Questions to answer:</h3> 
 +
          <ul>
 +
            <li>How to see them? </li>
 +
            <li>Where can we find them?</li>
 +
          </ul>
 +
          <h3>Skills:</h3>
 +
          <ul>
 +
            <li>Observation (do an observation drawing)</li>
 +
            <li>Recognize a microorganism and associate it to its environment</li>
 +
          </ul>
 +
          <p>
 +
            First, we introduced the micro-scale and zoom principle using mathematics, pictures and common objects like rulers and reams of paper.  
 +
          </p>
 +
          <p>
 +
            Then, we presented some pictures of microorganisms annotated with their name and pictures of environments where microorganisms can live in (cheese, rivers, mud, yoghurt). The goal was to associate each microorganism with its corresponding environment. The pupils were very surprised to discover such a diversity and that microorganisms could be found in food or were useful to produce bread.
 +
          </p>
 +
          <p>
 +
            Finally, all pupils selected a microorganism and drew an observation drawing in the &ldquo;lab report&rdquo; according to the guidelines we gave them.
 +
          </p>
 
         </div>
 
         </div>
         <div class="card_expl">
+
         <div class="workshop-descr" id="workshop-11">
           <div class="card_text">
+
           <h2>
             <p>
+
             A black box containing bioluminescent <i>Vibrio harveyi</i>: show an impressive capacity of living organisms
              <b>Effet :</b> Chaque colonie pathog&egrave;ne de l'homme gagne 2 log.  
+
          </h2>   
D&eacute;faussez ensuite cette carte.
+
          <h3>Questions to answer:</h3>
            </p>
+
          <ul>
            <p class="go-further fr">
+
            <li>How to see them? </li>
              Les bact&eacute;ries pathog&egrave;nes sont souvent des commensales, c&rsquo;est &agrave; dire qu&rsquo;elles sont pr&eacute;sentes dans leur h&ocirc;te sans pour autant que celui-ci ne pr&eacute;sente de sympt&ocirc;me. Un &eacute;quilibre s'installe entre la bact&eacute;rie et le syst&egrave;me immunitaire de l'h&ocirc;te. Un affaiblissement du syst&egrave;me immunitaire de cet h&ocirc;te &nbsp;peut d&eacute;clencher la multiplication du pathog&egrave;ne et l&rsquo;installation de la pathologie.  
+
            <li>Where can we find them?</li>
             </p>
+
          </ul>
          </div>
+
          <h3>Skills:</h3>
 +
          <ul>
 +
            <li>Create and follow a scientific protocol</li>
 +
          </ul> 
 +
          <p>
 +
            During the session, both empty and contaminated Petri dishes with yoghurt, fingers, leaves and river water were observed. The pupils drew an observation drawing of the boxes and also described what they saw in the box: the size, color and aspect of the microorganisms present on the Petri dish.
 +
          </p>
 +
          <p>
 +
            We explained the difference between the pictures of a single microorganism cell and one of the visible stain (called a colony) on a Petri dishes. This notion was quite difficult for the pupils. We used the analogy of a town (the colony) seen from the space, and only one human, invisible from the space. They measured the diameter of a stain to have an approximation of how many individual microorganisms can compose one colony.
 +
          </p>
 +
          <p>
 +
            Afterwards the pupils imagined experiments to collect microorganisms. They were eager to contaminate their own dishes as planned, so we let them do that with whatever they wanted: unwashed and washed hands, nose, chocolate,... following these guidelines : not opening the Petri dish after the contamination and annotate it with the date and the name of the experimenter. The notion of negative control was also explained by using a Petri dish without microorganism.
 +
          </p>
 +
          <p>
 +
             When comparing freshly inoculated Petri dishes and others with clearly visible stains, the pupils understood that it takes time for microorganisms to grow. With the pupils participation, a protocol to measure the growth of the microorganism was set up. They had to take pictures or realize drawn observations in the lab book to describe the microorganisms growth.
 +
          </p>
 +
          <p>
 +
            <i>For safety reasons, the Petri dishes were sealed with parafilm and an observation post was installed with the pupils. Two weeks later, the teacher gave us back the Petri dishes in order to eliminate the microorganisms properly with our autoclave. </i>           
 +
          </p>
 
         </div>
 
         </div>
       </div>
+
       </section>
      </div>
+
     
+
    </div>
+
  
    <div class="booklet_en">
+
       <section class="school-subcat" id="sc7">
       <section>
+
        <h1>Experimental results through weeks</h1>
        <h1>Basic Rules</h1>
+
        <div style="width:100%; text-align: center;">
+
          <img style="width:200px;" src="https://static.igem.org/mediawiki/2017/b/bd/T--INSA-UPS_France--Microbioworld_licence_cc.logo.large.png" alt="">
+
          <img style="width:200px;" src="https://static.igem.org/mediawiki/2017/c/cc/T--INSA-UPS_France--Microbioworld_licence_by-nc-nd.png" alt="">
+
        </div>
+
 
         <p>
 
         <p>
           <i>
+
           Due to the french legislation about external intervention in classroom, we were not allowed to come back in the class once more. Both the analysis and the validation were performed in autonomy at school with the support of the teacher.  
          We chose to place this game under the protection of a Creative Commons licence in order to share it freely and make it a pedagogical tool open to all.  
+
          </i>
+
 
         </p>
 
         </p>
        <h2>Context</h2>
 
 
         <p>
 
         <p>
           <i>MicroBioWorld</i> is a card game dedicated to microbiology. This game is based on current scientific knowledge and offers you a trip into the world of microorganisms in order to significantly improve their grasp of the existence, diversity and manipulation of these microorganisms.
+
           Two weeks after the intervention, the pupils send to us a report of their experiments. The results were satisfying as every plate contained microorganisms colonies except the negative control.  
 
         </p>
 
         </p>
 +
        <img src="https://static.igem.org/mediawiki/2017/c/c7/T--INSA-UPS_France--HP-PE_School_end.png" alt="">
 +
      </section>
 +
 +
      <section class="school-subcat" id="sc8">
 +
        <h1>A new representation of microbial diversity</h1>
 
         <p>
 
         <p>
           <i>MicroBioWorld</i> was created by students as part of the iGEM competition (= international Genetically Engineered Machine) and is accessible for all players, from the age of 1, to play with their family or friends.
+
           The consolidation was done by the teacher during the two weeks growing time. We were also involved during this time: because the pupils send us some new questions: for example, they wanted to know how we destroy Petri dishes, and why there was different colours on their dishes. We transmitted our answers to the teacher.  
 
         </p>
 
         </p>
        <h2>Goal</h2>
 
 
         <p>
 
         <p>
           Every player acts as a bacteria colony (a cluster of bacteria originating from the same mother bacterium).  
+
           After the consolidation, the pupils did the same work as during the first session: they drew their representation of microorganisms and wrote a feedback (“what I have remembered”) about the pedagogical project.  
 
         </p>
 
         </p>
 +
        <h2>How did the knowledge of the students evolve after the pedagogical sequence?</h2>
 
         <p>
 
         <p>
           To win, be the first to build a colony of 10 log, being ten billions of bacteria! To do so, you can use the benefits granted by your type of bacteria and the modifications you add to it it. There are also other paths to victory, but you will discover it by yourself along your journey.  
+
           The analysis of the pupils work 2 weeks after our intervention revealed a clear evolution of the representation and knowledge of the pupils. Those progress can be sorted as 3 levels.
 
         </p>
 
         </p>
        <h2>Playing a game turn</h2>
+
         <h3>Level 1</h3>
         <h3>Preparation</h3>
+
 
         <p>
 
         <p>
           Each player receives one bacteria card. Every player as to put his bacterium card visible as well as all its equipped plasmids.  
+
           The representation drawing present empty elliptic forms as the E. coli colony observed during the session. The pupils use very often the term microorganism instead of microbe. Here are some characteristics they remembered:
 
         </p>
 
         </p>
 +
        <ul>
 +
          <li>&ldquo;The microorganism can only be observed with a microscope as they cannot be seen with the naked eye.&rdquo;</li>
 +
          <li>&ldquo;Some are good for the body and others are nasty.&rdquo;</li>
 +
          <li>&ldquo;People try to put as few microorganisms as possible in sweets or in cans.&rdquo;</li>
 +
        </ul>
 
         <p>
 
         <p>
           &ldquo;Media&rdquo; cards are mimicking the environment in which colonies are growing during the game (see paragraphs about &ldquo;media&rdquo; for further information). The game starts with the LB media. Shuffle all the other media cards and place the pile face down on the table.
+
           This level attests a first evolution from the zoomorphic conception of microorganism. Indeed, we can not see any mouth, teeth, eye or insects in the pupils representations. Nevertheless, the attributes &ldquo;good&rdquo; and &ldquo;nasty&rdquo; show that this evolution has to be consolidated.
 
         </p>
 
         </p>
 +
        <h3>Level 2</h3>
 
         <p>
 
         <p>
           Then, shuffle the stack. From this stack, hand out a deck of 3 cards to each player (the following effect isn&rsquo;t active: &ldquo;this card has to be played immediately&rdquo;).
+
           Besides smooth elliptical shapes the drawings contained flagellum. The characteristics of the level 1 are present but the distinction between pathogen and non pathogen is clearly explicit. (pathogen : dangerous for the body). The pupils precised that microorganisms have to grown on Petri dishes to be observed. The zoomorphic completely disappears at this level.
 
         </p>
 
         </p>
 +
        <h3>Level 3</h3>
 
         <p>
 
         <p>
           Every player starts with 5 log bacteria, which accounts for one hundred thousands bacteria. Indicate your progression witha little pointer (like the tip of a pen or a little triangular piece of paper).
+
           The drawings include elements of the cytoplasm (DNA, proteins) without being explicitly named. In addition of the characteristics of level 1 and 2, the pupils evoke the antiseptic power of some products: bleach and 90% ethanol solution. Those substances do not contain microorganism as they are able to kill them. The term "microbes" is definite as &ldquo;member of the microorganisms family&rdquo;. The restored elements show that those pupils have junior high school level of knowledge about microorganisms.
 
         </p>
 
         </p>
         <h3>Turn</h3>
+
         <h2>Conclusion</h2>
 
         <p>
 
         <p>
           When it is your turn you can <b>play any card of your hand</b>.<b>Then, do one action</b> among the three following:
+
           A strong evolution in the representation of all pupils has been observed. Thus our action has had a positive impact on all pupils regardless of their prior knowledge about the subject. We have manifestly contributed to the construction of a non zoomorphic representation of microorganisms and to the discovery of a new world that was widely unknown. Their curiosity and their enthusiasm truly impressed us! As iGEMers, with those interventions, we understood how the concepts we used daily in our lab were seen by children. We learnt that during a scientific project  or career, we have to stay close to children and education. Indeed, with their representations and their questionnements, we were able to stand back from our “researcher” point of vue and consider our scientific field differently.
 
         </p>
 
         </p>
         <ul>
+
         <img src="https://static.igem.org/mediawiki/2017/d/db/T--INSA-UPS_France--HP-PE_School_drawing-after.png" alt="">
          <li><b>Draw</b> a card. Unless otherwise indicated, a drawn card must stay in the player’s deck for one turn before being played, and the deck can contain up to 3 cards. You can discard a card to draw another one from the pile. </li>
+
      </section>
           <li><b>Multiply</b> (the colony gains 1 log)</li>
+
 
         </ul>
+
 
         <p class="go-further en">
+
    </div>
          A bacterium can develop by using resources of the medium (carbon, nitrogen, iron, etc.). Within a colony, bacteria are multiplying by creating a copy of &nbsp;themselves: they are &nbsp;dividing. In the game, the &ldquo;log&rdquo; are used to describe the amount of bacteria. This notion is used to describe the order of magnitude of a bacterial population that can reach billions of individuals. For example, in the large intestine, home to many bacteria, there are approximately 14 log bacteria, meaning a hundred of thousand of billions of bacteria!
+
    </div>
 +
 
 +
    <!-- *********** -->
 +
    <!-- ***end***** -->
 +
    <!-- ***schools* -->
 +
    <!-- *********** -->
 +
 
 +
   
 +
 
 +
    <div class="category-content " id="2">
 +
    <div class="summary-left">
 +
      <ul>
 +
        <li data-number="9" style="list-style-type: none;">Card game conception</li>
 +
        <li data-number="10">Learning through play</li>
 +
        <li data-number="11">Educational game design</li>
 +
        <li data-number="12">Discussion</li>
 +
      </ul>
 +
    </div>
 +
    <div class="content-right">
 +
    <section id="cg9">
 +
      <h1>Card game</h1>
 +
      <p>
 +
        Conduct several interventions in schools cause is in our opinion clearly a nice way for pupils to &lsquo;learn by doing&rsquo;. During this period, we thought is was also a good idea to bring scientific knowledge outside of the classroom. That is why we came up with the idea of creating a strategy card game focused on biology. With this game, we are hoping to draw attention to the hidden world of microorganisms and make it visible elsewhere than on the bench of a scientist or inside a biology student’s notebook. We really wanted to integrate our game in an educational approach and considered it as a nice way to talk about our field of study. Many games already exist on the subject (<i>Strain, Gusty, Bacteria Combat, Healing Blade, …</i>) but they are mainly about antibiotics resistance whereas we wanted to bring something new by presenting some genetic aspects in biotechnology.  
 +
      </p>
 +
      <p>
 +
        The card game was indeed designed to get people to understand biodiversity, microbiology and genetics by a playful approach. It is meant to be accessible to a large audience. We created this card game in collaboration with game design students to get an attractive product we can share with as many people as possible. They also gave us a unique point of view by being both insiders of the game conception and having no advanced education in science. We thus tested it gradually with the help of scientists and general public to improve the gameplay so that it can be both fun and scientifically accurate.
 +
      </p>
 +
      <p>
 +
        We are aware that our game can raise interrogations about horizontal gene transfer and genetic engineering of living organisms, as the player acts as a bacteria colony attacking others and can grow in strength by acquiring plasmids. The main goal of our card game is to provide basic knowledge and vocabulary about biology to a young or a general audience so that they can later construct their own opinion. We therefore hope in engaging a discussion about science in society, and unleash the player’s curiosity about microbiology.
 +
      </p>
 +
      <p>
 +
    </section>
 +
 
 +
    <section id="cg10">
 +
      <h1>Learning through play</h1>
 +
      <p>
 +
        With the increasing use of serious games in education and corporations, it may seem obvious today that learning through games is a much more efficient and pleasing way to reach out to children or people in general. This concept seems to assume that children or even adults don’t usually enjoy learning the traditional way, but it is actually a wrong statement. Everyone do indeed love learning when it is relevant and when they can find their own motivations in it. As the main motivation for playing a game is also entertainment and is caused by curiosity, it is a perfect way to start an enjoyable learning process.
 +
      </p>
 +
      <p style="text-align:center;">
 +
        <i>&ldquo;Game-playing is a vital educational function for any creature capable of learning&rdquo; </i><br />
 +
        (Crawford,  The Art of Computer Game Design, 1982)
 +
      </p>
 +
      <p>
 +
        According to Malone and Lepper<sup>1</sup>, there are 7 factors to provoke personal and interpersonal motivation. The rules and design of <i>&lsquo;Microbioworld&rsquo;</i> were created around these 7 factors:
 +
      </p>
 +
      <ul>
 +
        <li>
 +
          <b>Challenge</b>
 +
          <br>
 +
          <p>The goal is clear: to get to 10 log of bacteria or be the last living colony; it allows the player to elaborate a strategy. Moreover, random shuffling of the cards makes it complex enough to be enjoyable. </p>
 +
        </li>
 +
        <li>
 +
          <b>Curiosity</b>
 +
          <br>
 +
          <p>The graphic designs of the cards make the game visual and attractive at first sight, and the educational booklet that explains the link between the game and the scientific reality gives the player desire to know more about what they just saw in the game. The gameplay is also arousing curiosity due to the variability of the cards and the possible combos which are making every game and strategy different. </p>
 +
        </li>
 +
        <li>
 +
          <b>Control</b>
 +
          <br>
 +
          <p>By choosing an action at the beginning of every turn, the player has a power on the outcome of the game. </p>
 +
        </li>
 +
        <li>
 +
          <b>Fantasy</b>
 +
          <br>
 +
          <p>The game illustrates a setup situation in which selected bacteria grow and develop in Petri dishes. The context of the game can be seen as a simplified model of the world where its elements and the interactions between them are used as pedagogical tools.</p>
 +
        </li>
 +
        <li>
 +
           <b>Competition</b>
 +
          <br>
 +
          <p>By attacking or dividing, players are in competition with each other and social interaction is making the game dynamic.</p>
 +
        </li>
 +
        <li>
 +
          <b>Cooperation</b>
 +
          <br>
 +
          <p>Some situations in the game (contaminant fungus, morphotype, symbiose... ) also make people create alliance and strategies together against common enemies.</p>
 +
        </li>
 +
         <li>
 +
          <b>Recognition </b>
 +
          <br>
 +
          <p>The possibility of winning the game can provide an exciting goal to reach and is a personal accomplishment that players want to achieve even if it is only an end in itself and has no further use. </p>
 +
        </li>
 +
      </ul>
 +
    </section>
 +
 
 +
    <section id="cg11">
 +
      <h1>Educational game design: a balance between the learning content and game content </h1>
 +
      <p>
 +
         According to Bj&oslash;rner and Hansen<sup>2</sup>, the most important thing to keep in mind when creating an educational game is to find the most suitable compromise between the quality and amount of learning content, and the potential of fun of the game content. That’s why we always have to think about these questions:
 +
      </p>
 +
      <ul>
 +
        <li>Is the card game scientifically accurate and interesting? </li>
 +
        <li>Are the rules and mechanisms clear enough for the game to be playable?</li>
 +
        <li>Is the game comprehensive, fun and challenging enough to give a motivation for playing?</li>
 +
        <li>Is the card game in accordance with ethical criteria?</li>
 +
      </ul>
 +
      <p>They also explain that a lot of educational games fail to inform or entertain players because they are not engaging enough and also because there is no clear link between the gameplay and what the designers want to teach. </p>
 +
      <p>To prevent that, we used an iterative approach to design <i>&lsquo;Microbioworld&rsquo;</i> which help us to answer to the previous main questions about the game. We realised that even if the player was the main actor of the design process, it was not possible to create a game without implicating different stakeholders. </p>
 +
      <p>Simultaneously, we asked researchers, teachers and scientists to validate the learning content, and game designers to validate the game content. Because it has to do with modifying bacteria so they can gain powers, we also requested the help of ethics experts. We also tested the game with the public that leads us to simplify the rules. Therefore, we’ve made around 10 different versions of the card game before to get the last one, Microbioworld. We used to test our different versions with our instructors and families to improve the gameplay: here you can see the team playing at the version &Delta;7bis after the weekly meeting: </p>
 +
      <img src="" alt="">
 +
      <p>
 +
As we want to improve our game to be perfectly balanced in the gameplay, we made a survey to take into account different comments of people who played to it. <a href="https://2017.igem.org/Team:INSA-UPS_France/Microbioworld">(you can see it on this page!)</a>
 +
      </p>
 +
      <p>
 +
We organised a Microbioworld tournament with students of the M2 "Molecular Microbiology" of the Université Paul Sabatier. We made them fill our survey : in general, people really liked the concept of the game. They was happy to find they favorit bacteria with special capacities in a game, and they found the illustrations funny (especially the chiadé plasmid). Students particularly appreciated the rigor of scientific notions mentioned in the game, but we noted that no one has the idea to consult the explicative booklet on our wiki to go further.
 +
      </p>
 +
      <p>
 +
        We also created an explicative booklet <a href="https://2017.igem.org/Team:INSA-UPS_France/Microbioworld">(click here to see it!)</a> that gives more information about the game rules and mechanisms, and also explains the science underneath each card effect. As the vocabulary used in the game is specific to the biology field, it was important to define and explain the concepts that are behind it for people who would like to go further. However, it is not necessary for the players to read the whole explanations to understand how to play the game. Thus, it engages the player to demonstrate autonomy in his learning process instead of teaching him a lecture without engaging any responsibility or action on his behalf. According to the discovery learning theory, people are more likely to remember concepts and knowledge when they discover it on their own.
 +
      </p>
 +
    </section>
 +
    <section id="cg12">
 +
      <h1>Create a group discussion and discard people misconceptions</h1>
 +
      <p>The main goal of our card game was in the first place to give some basic knowledge about microbiology and synthetic biology to people who are not familiar with it, but we realized there was a risk to trigger a sensible debate about genetically engineered microorganisms. The plasmids of the game are indeed generally giving a characteristic that could be considered as a superpower used to attack other living organisms. As we wanted the game to be as much scientifically accurate as possible, this game mechanic could make people think that biologists can easily integrate dangerous genes into bacteria or create biological weapons. On the other hand, we thought creating a discussion around it could be interesting. </p>
 +
      <p>With the latest advances in the biotechnologies field and the media coverage they get, the general public today is already implicitly involved in the way of the technology is moving forward. That is why we thought the card game would also be a nice basis to initiate a discussion. We did not want to give any of our opinions about the subjects we brought into the game and we only described facts about biological phenomena, microorganisms and their characteristics. We have adopted an objective position to share some knowledge to those who play <i>&lsquo;Microbioworld&rsquo;</i>, without taking a side: we wanted them to build their own moral reflection about the risks and opportunities in modern biology. </p>
 +
      <p>We also took care not to present only pathogen bacteria, because it would not have reflected the natural microbiological balance and we didn&rsquo;t want people to think only &ldquo;mean&rdquo; microorganisms exist. Furthermore, we know that our game is basically about a war between microorganisms because the &ldquo;offensive powers&rdquo; (plasmids) that players are using to win introduce the concept of conflict in the game. However, we wanted it to be clear that it is only a pretext to make the game fun and interactive. Indeed, war games often depict a real life simulation where the moral choices of &ldquo;attacking&rdquo; or &ldquo;fighting&rdquo; somebody or something is not made by the player but guided by the game designer. To us, there was still a need of placing the player in the center of the reflection. That is why we clarified in the game booklet what is the part of reality and what in the mechanisms was included for fun purpose only. We don&rsquo;t want players of <i>&lsquo;Microbioworld&rsquo;</i> to think that researchers also have fun creating super powerful bacteria to kill everyone! Which is by the way scientifically impossible.</p>
 +
      <p>Moreover, one of the risk of creating graphical designs of biological phenomena to attract curiosity was to create misconceptions about what these phenomena really are. For example, after interpretation of the children representations made during our interventions in schools, we concluded that children of these ages often considered microorganisms as little animal or insects. For fun purpose, the game graphic designers decided to draw bacteria with faces to personify it and we kept it that way, but there was a need to specify in the game booklet some adjustments and define precisely where the boundary between reality and artistic freedom is. We also decided to make the game accessible to children from age 10 because we thought it could be hard for primary schools children to distinguish clearly this boundary, mostly because they don’t have the necessary knowledge and critical thinking to understand that yet. </p>
 +
 
 +
      <h2>References</h2>
 +
      <ol style="color:#666;">
 +
        <li>Malone, T. &amp; Lepper (1987). <i>Making Learning Fun: A Taxonomy of Intrinsic Motivations for Learning.</i> In Snow, R. &amp; Farr, M. J. (Ed), Aptitude, Learning, and Instruction Volume 3: Conative and Affective Process Analyses. Hillsdale, NJ</li>
 +
        <li>Bjørner, T., &amp; Hansen, C. B. S. (2010). <i>Designing an Educational Game: Design Principles from a Holistic Perspective.</i> International Journal of Learning, 17(10), 279-290.</li>
 +
      </ol>
 +
    </section>
 +
    </div>
 +
    </div>
 +
   
 +
 
 +
    <div class="category-content " id="3">
 +
    <div class="summary-left">
 +
      <ul>
 +
        <li data-number="15" style="list-style-type: none;">European Researcher's night</li>
 +
        <li data-number="16">Context: GMOs in France</li>
 +
        <li data-number="17">GMO quiz game</li>
 +
        <li data-number="18">Workshops in a circuit</li>
 +
      </ul>
 +
    </div>
 +
    <div class="content-right">
 +
      <section id="rn15">
 +
        <h1>Researcher's night</h1>
 +
        <p>
 +
          The <b>European Researcher&rsquo;s Night</b> is a major scientific event that gather researchers and general public in a convivial atmosphere. This is the opportunity for laboratories to communicate on their work in a creative way, and to share scientific and ethical values with the public. We especially want to thank the LISBP, our host laboratory for our iGEM experiments, that helped us for the workshop design and animation of the event. In 2017, the topic of the event was &ldquo;(Im)possible?&rdquo;.
 
         </p>
 
         </p>
         <ul>
+
         <p>
           <li><b>Attack</b> an opponent colony (- 1 log to the attacked colony)</li>
+
           Our motivations for being involved in this event were to face an adult public and change their prejudices on GMOs. We wanted people to discover our field, synthetic biology, by making them questioning themselves on GMOs through 3 approaches: biodiversity, application and legislation.
         </ul>
+
        </p>
         <p class="go-further en">
+
      </section>
           Some bacteria have a whole arsenal to limit the growth of their competitors (for example by trapping for some resources like iron) or to destroy them! (for example by producing toxins) However, although in the game all bacteria are able to attack any other one, it is not the case in nature since they are rarely in competition.
+
      <section id="rn16">
 +
         <h1>Context: how to deal with GMOs in France?</h1>
 +
         <p>
 +
           During several meetings with the french public and from our experience as biologists, we have observed that in France, most of people are afraid of GMOs and ignore why it has been created in the first place. They usually can&rsquo;t tell exactly what can be done in the field of medicine, environment or even nutrition, and more important, we have noted that people use to think scientists can do anything they want in their labs with GMOs manipulation. Indeed, french press is not kind with biotechnologies. For example, we have encountered a journalist from &ldquo;France Inter&rdquo;, a famous radio in France, to talk about our iGEM project and he asked us not to say the word &ldquo;GMO&rdquo; during the interview because he didn&rsquo;t want to create a polemic&hellip; It was really frustrating for us to imagine our project had to be censored before being heard by the public. We believe that we need to establish a dialogue between scientists and general public to remove prejudices.
 +
        </p>
 +
        <p>
 +
          Thus, we had to face this challenge: <b>how to make people question themselves on synthetic biology and legislation?</b>
 
         </p>
 
         </p>
 
       </section>
 
       </section>
  
       <section>
+
       <section id="rn17">
         <h1>Bacteria cards</h1>
+
         <h1>Design of our game &ldquo;Possible or Impossible&rdquo;</h1>
 +
        <h2>Andragogy methods</h2>
 
         <p>
 
         <p>
           <b>Rule:</b> at the start of the game, each player receives a random bacterium card that defines the type of bacteria that he is going to embody. The player has to take advantage of each bacterium’s strengths and weaknesses to be the first reaching 10 log.  
+
           As we want to encounter an adult public to establish a discussion, we needed to study teaching methods for them to be open to a dialogue: those methods are parts of the andragogy studies. We found several publications studying andragogy and we tried to highlight the main points of it for future iGEMers to get inspired on our investigation.  
 
         </p>
 
         </p>
         <p class="go-further en">
+
         <p>
           Bacteria are microscopic living organisms (between 0.2 et 2 &micro;m) and are only composed of one single cell. Currently, we estimate more than billions bacterial &ldquo;species&rdquo; occupying almost all environments (from freezing areas to hot deserts, from human guts to marine abysses…). <br />
+
           First, <b>the adult learner is self-directed</b> and has a need to be perceived by others as self-directing. When adult learners find themselves in situations in which they are not allowed to be self-directing, their reactions are &ldquo;bound to be tainted with resentment and resistance&rdquo;.  
          Bacteria have wide ranges of properties, shapes and behaviours. <br />
+
          Some are rod-shaped (bacillus), others round-shaped (coccus). <br />
+
          Prototrophic bacteria are able to feed themselves in any environment, while auxotrophic ones need to get all nutritive elements from their environment to grow. Some bacteria are able to cause diseases to humans, we call them pathogens. The scientific community has also classified bacteria according to their ability to be stained by the Gram technique that depends on the composition of their membrane (they are called either Gram-positive or Gram-negative). <br />
+
          On agar medium, bacteria can multiply themselves and end up forming a visible cluster (around 8 log). This small dot is called a colony and is going to grow bigger and bigger as long as the nutritive elements are sufficient to sustain its growth. The color and the shape of this colony depends on bacteria.
+
 
         </p>
 
         </p>
 +
        <p>
 +
          Second, the adult learner has accumulated life experiences that represent an essential resource for learning. When an adult <b>learner&rsquo;s experience</b> is ignored or devalued, s/he feels rejected as a person. That is so because &ldquo;to an adult learner, his experience is who he is&rdquo;.
 +
        </p>
 +
        <p>
 +
          Finally, adult learners have a problem-centered approach to learning rather than a subject-centered approach. The social work adult learner wants &ldquo;to apply tomorrow what he learns today, so his time perspective is one of <b>immediacy of application</b>&rdquo; (A. Gitterman : &ldquo;Interactive Andragogy: Principles, Methods, and Skills&rdquo;, 2004).
 +
        </p>
 +
        <h2>Game principle</h2>
 +
        <p>
 +
          This investigation got us involved in creating a quiz game about biotechnologies, in the form of a card game. To be close of the European Researchers Night theme, &ldquo;(Im)Possible?&rdquo;, we&rsquo;ve called this game &ldquo;Possible or Impossible&rdquo;: its goal is to guess if the affirmation on the top of the card is rather &ldquo;Possible&rdquo; or &ldquo;Impossible&rdquo; with an instinctive answer. We have classed our 35 cards into 3 topics: <span style="color:#6d9b3c; font-weight: 700;">biodiversity</span>, <span style="color:#b29230; font-weight: 700;">application</span> and <span style="color:#589DD2; font-weight: 700;">legislation</span> (see examples below).
 +
        </p>
 +
        <p>
 +
          This game has been made for people to be autonomous: they can play without our help and they are not afraid to be wrong (which refers to the most important point of the andragony studies: the adult is a self-directed learner). Because it raises interrogations, this game has been a good approach to open a dialog with adults. We observed that people used to start the discussion explaining their own experience or thoughts on the topics that awoke their curiosity: we managed to start the discussion by developing learner’s experience, the second main point to be respected in an andragogy approach.
 +
        </p>
 +
        <table>
 +
          <tr>
 +
            <td style="width:20%;"><img src="https://static.igem.org/mediawiki/2017/6/6f/T--INSA-UPS_France--HP-PE_Poss_Biodiversity.png" style="width:100%;" alt=""></td>
 +
            <td style="text-align:justify; padding-left: 30px;">Those questions aim to introduce several biodiversity particularities.</td>
 +
          </tr>
 +
          <tr>
 +
            <td style="width:20%;"><img src="https://static.igem.org/mediawiki/2017/0/0f/T--INSA-UPS_France--HP-PE_Poss_Legislation.png" style="width:100%;" alt=""></td>
 +
            <td style="text-align:justify; padding-left: 30px;">These cards aim to demystify the french legislation on GMOs to people. Their goal is to break the prejudices of the public on the use of genetically modified microorganisms in french labs.</td>
 +
          </tr>
 +
          <tr>
 +
            <td style="width:20%;"><img src="https://static.igem.org/mediawiki/2017/a/ae/T--INSA-UPS_France--HP-PE_Poss_Application.png" style="width:100%;" alt=""></td>
 +
            <td style="text-align:justify; padding-left: 30px;">These questions highlight several examples of GMOs applications on different fields (health, environment, industry…)</td>
 +
          </tr>
 +
        </table>
 
       </section>
 
       </section>
  
      <table class="cards_table">
 
        <tr>
 
          <td id="img101" class="active">
 
            <img src="https://static.igem.org/mediawiki/2017/1/1b/T--INSA-UPS_France--Microbioworld_Cards_fr_Bsubtilis-min.png" alt="">
 
          </td>
 
          <td id="img102">
 
            <img src="https://static.igem.org/mediawiki/2017/5/5e/T--INSA-UPS_France--Microbioworld_Cards_fr_Dradiodurans-min.png" alt="">
 
          </td>
 
          <td id="img103">
 
            <img src="https://static.igem.org/mediawiki/2017/e/e8/T--INSA-UPS_France--Microbioworld_Cards_fr_Ecoli-min.png" alt="">
 
          </td>
 
          <td id="img104">
 
            <img src="https://static.igem.org/mediawiki/2017/6/65/T--INSA-UPS_France--Microbioworld_Cards_fr_Saureus-min.png" alt="">
 
          </td>
 
          <td id="img105">
 
            <img src="https://static.igem.org/mediawiki/2017/e/ef/T--INSA-UPS_France--Microbioworld_Cards_fr_Spneumoniae-min.png" alt="">
 
          </td>
 
          <td id="img106">
 
            <img src="https://static.igem.org/mediawiki/2017/3/34/T--INSA-UPS_France--Microbioworld_Cards_fr_Vcholerae-min.png" alt="">
 
          </td>
 
          <td></td>
 
        </tr>
 
      </table>     
 
 
        
 
        
      <div class="card_container active" id="full_img101">
 
        <div class="card_img">
 
          <img src="https://static.igem.org/mediawiki/2017/1/1b/T--INSA-UPS_France--Microbioworld_en_Bacteria_bsub.png" alt="">
 
        </div>
 
        <div class="card_expl">
 
          <div class="card_text">
 
            <p>
 
              <b>Distinctive feature: Sporultaion</b> <br />Once in the game, when your colony is undergoing damage, <i>B. subtilis</i> can sporulate: you do not lose any log during this turn.
 
            </p>
 
            <p>
 
              <b>Characteristics:</b> Bacillus, Gram-positive, non-pathogenic, prototrophic.
 
            </p>
 
            <p class="go-further en">
 
            Sporulation enables some organisms to survive a wide range of stresses. To do so, the bacterium enters a vegetative state called dormancy and surrounds itself with a cell wall, protecting it from outside aggressions. When the outside conditions improve, the spore can &ldquo;sprout&rdquo; and the bacterium can resume its growth. Scientists were able to make spores from egyptian mummies sprout!
 
            </p>
 
          </div>
 
        </div>
 
      </div>
 
  
       <div class="card_container" id="full_img102">
+
 
        <div class="card_img">
+
       <section id="rn18">
          <img src="https://static.igem.org/mediawiki/2017/9/9c/T--INSA-UPS_France--Microbioworld_en_Bacteria_dradio.png" alt="">
+
        <h1>Our workshop: a synthetic biology learning circuit</h1> 
        </div>
+
        <p>
        <div class="card_expl">
+
          In order to follow the year&rsquo;s thematic &ldquo;(Im)Possible&rdquo;, we chose to focus our workshop on the incredible features of biodiversity, how to use it in synthetic biology, and what are legal limits on GMO use in France. To do this, we&rsquo;ve designed a circuit of workshops for people to follow a logical discovery path: raising curiosity first, then make people question themselves on synthetic biology capabilities and limits, thus make them practice scientific experiments, in order to finally open a debate to go further.
          <div class="card_text">
+
        </p>
             <p>
+
        <p>
              <b>Distinctive feature: Polyextremophile</b> <br /><i>D. radiodurans</i> can divide itself at every temperature and is resistant to UV radiations.
+
          <b><i>Click on one of the workshops to know more about it!</i></b>
             </p>
+
        </p>
             <p>
+
        <div style="background:white;margin:0px;text-align: center; width: 100%;">
               <b>Characteristics:</b> Coccus, Gram-positive, non-pathogenic, auxotrophic.
+
          <!-- img workshops -->
             </p>
+
          <div style="table-layout:fixed; display:table;border-collapse: collapse;">
             <p class="go-further en">
+
            <div class="workshop-img" data-target="1">
            <span style="font-style: normal;">Deinococcus radiodurans</span> is a polyextremophile bacteria that is able to maintain its division on a wide range of temperatures. Thus it is of great interest for the scientific community to understand its survival capacity. This capacity is thought to be due to the multiple copies of its genes.  
+
              <img src="https://static.igem.org/mediawiki/2017/9/97/T--INSA-UPS_France--HP-Night_workshop-1.png" alt="">
             </p>
+
            </div>
 +
            <div class="workshop-img" data-target="2">
 +
              <img src="https://static.igem.org/mediawiki/2017/7/7e/T--INSA-UPS_France--HP-Night_workshop-2.png" alt="">
 +
             </div>
 +
            <div class="workshop-img" data-target="3">
 +
              <img src="https://static.igem.org/mediawiki/2017/6/61/T--INSA-UPS_France--HP-Night_workshop-3.png" alt="">
 +
            </div>
 +
            <div class="workshop-img" data-target="4">
 +
              <img src="https://static.igem.org/mediawiki/2017/3/3b/T--INSA-UPS_France--HP-Night_workshop-4.png" alt="">
 +
             </div>
 +
             <div class="workshop-img" data-target="5">
 +
               <img src="https://static.igem.org/mediawiki/2017/0/02/T--INSA-UPS_France--HP-Night_workshop-5.png" alt="">
 +
             </div>
 +
             <div class="workshop-img" data-target="6">
 +
              <img src="https://static.igem.org/mediawiki/2017/3/36/T--INSA-UPS_France--HP-Night_workshop-6.png" alt="">
 +
             </div>
 
           </div>
 
           </div>
 
         </div>
 
         </div>
      </div>
 
  
      <div class="card_container" id="full_img103">
+
        <div></div>
        <div class="card_img">
+
 
           <img src="https://static.igem.org/mediawiki/2017/8/8f/T--INSA-UPS_France--Microbioworld_en_Bacteria_ecoli.png" alt="">
+
        <div class="workshop-descr" id="workshop-1">
 +
          <h2>
 +
            Introduction on microbial diversity with our card game <i>MicrobioWorld</i>
 +
           </h2>       
 +
          <p>
 +
            We designed this game in order to introduce the fascinating world of microorganisms. Some basics about microbiology are illustrated in this game like natural antibiotics resistance, horizontal DNA transfer by conjugation and transduction, plasmid incompatibility, culture media selection or even bacterial characteristics (gram, morphotype…). Although some notions seem complicated for the general public, the gameplay has been adapted to be understood by everyone.
 +
          </p>
 +
          <p>
 +
            <i>You can click on this page's Microbioworld section to know more about how we design it, or take a look at the game's rules in the <a href="https://2017.igem.org/Team:INSA-UPS_France/Microbioworld">game booklet</a>.
 +
            </i>
 +
          </p>
 
         </div>
 
         </div>
         <div class="card_expl">
+
         <div class="workshop-descr" id="workshop-2">
          <div class="card_text">
+
          <h2>
            <p>
+
            A black box containing bioluminescent <i>Vibrio harveyi</i>: show an impressive capacity of living organisms
              <b>Distinctive feature: Microbiota </b> <br />Once in the game you can chose another player to be part of <i>E. coli</i> microbiota: you can no longer attack or be attacked by this player. Be the first to reach 10 log to defeat your microbiota.
+
           </h2>      
            </p>
+
            <p>
+
              <b>Characteristics:</b> Bacillus, Gram-negative, non-pathogenic, prototrophic.
+
            </p>
+
            <p class="go-further en">
+
              <span style="font-style:normal;">Escherichia coli</span> is naturally very abundant in human guts, it is even the first organism to appear in it and colonize it at birth. It is a facultative aerobic, meaning that it can develop with or without oxygen. Because of its easy-to-grow capacity it has been the most widely used bacterial model in laboratories and bio-industries to produce different organic compounds.
+
            </p>
+
           </div>
+
 
         </div>
 
         </div>
      </div>
+
        <div class="workshop-descr" id="workshop-3">
 
+
          <h2>
      <div class="card_container" id="full_img104">
+
            Observation of a every day life using microorganism: <i>Saccharomyces cerevisiae</i>
        <div class="card_img">
+
           </h2> 
           <img src="https://static.igem.org/mediawiki/2017/8/8a/T--INSA-UPS_France--Microbioworld_en_Bacteria_saur.png" alt="">
+
          <p>
 +
            ...for people to have a concrete idea on what is a microorganism, and make them realize that they are used in the everyday life.
 +
          </p>    
 
         </div>
 
         </div>
         <div class="card_expl">
+
         <div class="workshop-descr" id="workshop-4">
          <div class="card_text">
+
            <p>
+
              <b>Distinctive feature: Multiresistance</b> <br /><i>Staphylococcus aureus</i> MRSA is chloramphenicol and ampicillin resistant.
+
            </p>
+
            <p>
+
              <b>Characteristics:</b>  Coccus, Gram-positive, pathogen, auxotrophic
+
            </p>
+
            <p class="go-further en">
+
            Its common name is golden staph due to the pigments it is producing that give a gold color to its colonies. For humans, it is naturally present on epidermis. This bacterium is well-known for its pathogenic behaviour when an infection opportunity is declared, in case of a wound for example. MRSA (Multi Resistant Staphylococcus Aureus) variant is sadly famous for its capacity to resist to most antibiotics.
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
      <div class="card_container" id="full_img105">
+
        <style>
        <div class="card_img">
+
        #workshop-4 table tr td{
          <img src="https://static.igem.org/mediawiki/2017/4/48/T--INSA-UPS_France--Microbioworld_en_Bacteria_spneumo.png" alt="">
+
          width:33%;
 +
          position: relative;
 +
        }
 +
        #workshop-4 table tr td img{
 +
          width:100%;
 +
        }
 +
          #workshop-4 table tr td img.first-img{
 +
            display:inline-block;
 +
          }
 +
          #workshop-4 table tr td img.last-img{
 +
            display:none;
 +
          }
 +
          #workshop-4 table tr td:hover > img.first-img{
 +
            display:none;          }
 +
          #workshop-4 table tr td:hover > img.last-img{
 +
            display:inline-block;
 +
          }
 +
        </style>
 +
          <h2>
 +
            Question yourself on GMO capabilities and legal limits with our quizz &ldquo;Possible or Impossible&rdquo;
 +
          </h2> 
 +
          <table>
 +
            <tr>
 +
              <td><img class="first-img" src="https://static.igem.org/mediawiki/2017/2/20/T--INSA-UPS_France--PE_Night_poss-1a.png" alt=""><img class="last-img" src="https://static.igem.org/mediawiki/2017/9/99/T--INSA-UPS_France--PE_Night_poss-1b.png" alt=""></td>
 +
              <td><img class="first-img" src="https://static.igem.org/mediawiki/2017/f/f1/T--INSA-UPS_France--PE_Night_poss-2a.png" alt=""><img class="last-img" src="https://static.igem.org/mediawiki/2017/4/4f/T--INSA-UPS_France--PE_Night_poss-2b.png" alt=""></td>
 +
              <td><img class="first-img" src="https://static.igem.org/mediawiki/2017/6/6d/T--INSA-UPS_France--PE_Night_poss-5a.png" alt=""><img class="last-img" src="https://static.igem.org/mediawiki/2017/c/cf/T--INSA-UPS_France--PE_Night_poss-5b.png" alt=""></td>
 +
            </tr>
 +
            <tr>
 +
              <td><img class="first-img" src="https://static.igem.org/mediawiki/2017/0/07/T--INSA-UPS_France--PE_Night_poss-8a.png" alt=""><img class="last-img" src="https://static.igem.org/mediawiki/2017/7/72/T--INSA-UPS_France--PE_Night_poss-8b.png" alt=""></td>
 +
              <td><img class="first-img" src="https://static.igem.org/mediawiki/2017/9/99/T--INSA-UPS_France--PE_Night_poss-3a.png" alt=""><img class="last-img" src="https://static.igem.org/mediawiki/2017/3/36/T--INSA-UPS_France--PE_Night_poss-3b.png" alt=""></td>
 +
              <td><img class="first-img" src="https://static.igem.org/mediawiki/2017/5/51/T--INSA-UPS_France--PE_Night_poss-6a.png" alt=""><img class="last-img" src="https://static.igem.org/mediawiki/2017/a/a0/T--INSA-UPS_France--PE_Night_poss-6b.png" alt=""></td>
 +
            </tr>
 +
            <tr>
 +
              <td><img class="first-img" src="https://static.igem.org/mediawiki/2017/b/b5/T--INSA-UPS_France--PE_Night_poss-7a.png" alt=""><img class="last-img" src="https://static.igem.org/mediawiki/2017/d/d6/T--INSA-UPS_France--PE_Night_poss-7b.png" alt=""></td>
 +
              <td><img class="first-img" src="https://static.igem.org/mediawiki/2017/2/2e/T--INSA-UPS_France--PE_Night_poss-11a.png" alt=""><img class="last-img" src="https://static.igem.org/mediawiki/2017/9/9b/T--INSA-UPS_France--PE_Night_poss-11b.png" alt=""></td>
 +
              <td><img class="first-img" src="https://static.igem.org/mediawiki/2017/4/4c/T--INSA-UPS_France--PE_Night_poss-4a.png" alt=""><img class="last-img" src="https://static.igem.org/mediawiki/2017/1/18/T--INSA-UPS_France--PE_Night_poss-4b.png" alt=""></td>
 +
            </tr>
 +
            <tr>
 +
              <td><img class="first-img" src="https://static.igem.org/mediawiki/2017/7/7b/T--INSA-UPS_France--PE_Night_poss-10a.png" alt=""><img class="last-img" src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--PE_Night_poss-10b.png" alt=""></td>
 +
              <td><img class="first-img" src="https://static.igem.org/mediawiki/2017/e/ea/T--INSA-UPS_France--PE_Night_poss-9a.png" alt=""><img class="last-img" src="https://static.igem.org/mediawiki/2017/7/7d/T--INSA-UPS_France--PE_Night_poss-9b.png" alt=""></td>
 +
              <td><img class="first-img" src="https://static.igem.org/mediawiki/2017/a/ad/T--INSA-UPS_France--PE_Night_poss-12a.png" alt=""><img class="last-img" src="https://static.igem.org/mediawiki/2017/0/0b/T--INSA-UPS_France--PE_Night_poss-12b.png" alt=""></td>
 +
            </tr>
 +
          </table>
 
         </div>
 
         </div>
         <div class="card_expl">
+
           
          <div class="card_text">
+
         <div class="workshop-descr" id="workshop-5">
            <p>
+
          <h2>
              <b>Distinctive feature: Competence</b> <br />Once in the game, when you attack another colony or when you&rsquo;re attacked by another colony, you can steal a plasmid card from it. Put this plasmid on your hand, you can have up to 4 cards in your hand.
+
            Basics about DNA with a practical approach
            </p>
+
          </h2>      
            <p>
+
          <p>
              <b>Characteristics:</b> Coccus, Gram-negative, pathogen, prototrophic.
+
            The particularity of this workshop is that it can be repeated at home with tools of everyday life. It is made to introduce what is DNA with a practical approach rather than with theoretical lessons.  
            </p>
+
          </p>
            <p class="go-further en">
+
          <object data="https://static.igem.org/mediawiki/2017/4/49/T--INSA-UPS_France--PE_DNA-extraction-protocol.pdf" type="application/pdf" width="550px" height="700px" title="DNA extraction protocol"></object>
              <span style="font-style: normal;">S. pneumoniae</span> is a human pathogen found in multiple infection, (pneumonia, ear infection, meningitis&hellip;) The competence mechanism of Streptococcus pneumoniae allows the bacteria to naturally take on plasmids of other microorganisms (see the paragraph &ldquo;plasmids&rdquo; for further information).
+
            </p>
+
          </div>
+
 
         </div>
 
         </div>
      </div>
+
        <div class="workshop-descr" id="workshop-6">
 
+
          <h2>
      <div class="card_container" id="full_img106">
+
            The example of a gene function with an enzymatic dosage of &beta;-galactosidase
        <div class="card_img">
+
           </h2>      
           <img src="https://static.igem.org/mediawiki/2017/7/71/T--INSA-UPS_France--Microbioworld_en_Bacteria_vchol.png" alt="">
+
 
         </div>
 
         </div>
        <div class="card_expl">
 
          <div class="card_text">
 
            <p>
 
              <b>Distinctive feature:  Cholera toxin</b> <br />During your attack, cholera toxin is spread in the opposing colony: if the attacked colony has at least 7 log, <i>V. cholerae</i> can also divide in addition to the attack.
 
            </p>
 
            <p>
 
              <b>Characteristics:</b> Bacillus, Gram-negative, pathogen, auxotrophic.
 
            </p>
 
            <p class="go-further en">
 
              <span style="font-style: normal;">Vibrio cholerae</span> is a bacterium that lives in water and causes the cholera disease. If it is consummated by human, it disrupts intestinal system and causes diarrhoea, then joins other water courses, allows it to colonize other environments. It also has a cutting apparatus, enabling it to attack other microorganisms to take advantage of their resources.
 
            </p>
 
          </div>
 
        </div>
 
      </div>
 
 
      <section>
 
        <h1>Media cards</h1>
 
        <p>
 
          &ldquo;Media&rdquo; cards mimick the environment in which colonies are growing during the game. The &ldquo;Transplanting&rdquo; card allows players to change the culture media during the game: when it is played, take the next card of the media stake, it becomes the new common media for all players.
 
        </p>
 
        <p class="go-further en">
 
          In laboratories microorganisms are grown on growth media, containing all the necessary nutrients for bacterial growth. The agar media is packaged in a Petri dish, a small round plastic box. If an antibiotic is added to a medium, this medium is called an selective medium: only the bacteria with the corresponding antibiotic resistance can grow on it. Some media are said differential, they color the bacteria according to their characteristics.
 
        </p>
 
 
       </section>
 
       </section>
 +
    </div>
 +
    </div>
  
      <table class="cards_table">
+
   
        <tr>
+
   
          <td id="img110"  class="active"><img src="https://static.igem.org/mediawiki/2017/a/a6/T--INSA-UPS_France--Microbioworld_Media_LB25-min.png" alt=""></td>
+
    <div class="category-content " id="4">
          <td id="img111" ><img src="https://static.igem.org/mediawiki/2017/4/48/T--INSA-UPS_France--Microbioworld_Media_LBUV-min.png" alt=""></td>
+
      <div class="summary-left">
          <td id="img112" ><img src="https://static.igem.org/mediawiki/2017/e/ea/T--INSA-UPS_France--Microbioworld_Media_LB45-min.png" alt=""></td>
+
      <ul>
          <td id="img113" ><img src="https://static.igem.org/mediawiki/2017/f/f9/T--INSA-UPS_France--Microbioworld_Media_LBamp-min.png" alt=""></td>
+
        <li data-number="20" style="list-style-type: none;">Conference</li>
          <td id="img114" ><img src="https://static.igem.org/mediawiki/2017/e/e3/T--INSA-UPS_France--Microbioworld_Media_LBchlo-min.png" alt=""></td>
+
        <li data-number="21">Programme</li>
          <td id="img115" ><img src="https://static.igem.org/mediawiki/2017/f/f9/T--INSA-UPS_France--Microbioworld_Media_LBconta-min.png" alt=""></td>
+
        <li data-number="22">Living machine?</li>
          <td id="img116" ><img src="https://static.igem.org/mediawiki/2017/3/36/T--INSA-UPS_France--Microbioworld_Media_chap-min.png" alt=""></td>
+
        <!--<li data-number="23">Twitter</li>-->
          <td id="img117" ><img src="https://static.igem.org/mediawiki/2017/5/51/T--INSA-UPS_France--Microbioworld_Media_mcc-min.png" alt=""></td>
+
      </ul>
          <td id="img118" ><img src="https://static.igem.org/mediawiki/2017/0/04/T--INSA-UPS_France--Microbioworld_Media_min-min.png" alt=""></td>
+
    </div>
        </tr>
+
    <div class="content-right">
      </table>
+
    <section id="cf20">
 +
      <h1>Conference</h1>
 +
      <p>
 +
        In order to bring scientists, students and teachers together around synthetic biology, we organised a conference at Université Paul Sabatier which is the science campus of the Toulouse university. Our motivation was to open up the debate on ethics in synthetic biology with a concerned public through the intervention of specialists from the ethics, biotechnologies and synthetic biology fields. It was also a good opportunity to introduce iGEM in Toulouse and to gather former iGEMers of the Toulouse team.
 +
      </p>
 +
    </section>
  
      <div class="card_container active" id="full_img110">
+
    <section id="cf21">
        <div class="card_img">
+
      <h1>Program of the conference</h1>
          <img src="https://static.igem.org/mediawiki/2017/5/55/T--INSA-UPS_France--Microbioworld_en_Media_LB25.png" alt="">
+
        </div>
+
        <div class="card_expl">
+
          <div class="card_text">
+
            <p>
+
              <b>Distinctive feature: </b> bacteria divide and attack in the normal way. In the game it is the starting growth medium.
+
            </p>
+
            <p class="go-further en">
+
              It is composed of yeast extract, peptone (mix of small proteic molecules that provides a nitrogen source among other things), salt and water.
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
       <div class="card_container" id="full_img111">
+
       <h2>Kaymeuang Cam: Introduction on synthetic biology</h2>
        <div class="card_img">
+
      <p><i>Kaymeuang Cam: Researcher at IPBS, Professor of genetic microbiology at Université Paul Sabatier and PI of iGEM Toulouse last years</i></p>
          <img src="https://static.igem.org/mediawiki/2017/0/06/T--INSA-UPS_France--Microbioworld_en_Media_LBUV.png" alt="">
+
      <p>
        </div>
+
        Mr Cam made a presentation to introduce synthetic biology, making comparison between electronic engineering and the use of biobricks. He summarized the key milestones that made the history of this particular field in science.
        <div class="card_expl">
+
      </p>
          <div class="card_text">
+
            <p>
+
              <b>Distinctive feature: </b> at the beginning of your turn, you lose 1 log before any other action.
+
            </p>
+
            <p class="go-further en">
+
              Few mutations naturally occur in every genome. Ultra Violet (UV) radiations are highly mutagenic agents: they stimulate the apparition of a lot of mutations, leading to an alteration of the genetic information. If too many mutations occur, the bacteria can’t keep their vital functions.  
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
       <div class="card_container" id="full_img112">
+
       <h2>Gilles Truan: iGEM and openscience</h2>
        <div class="card_img">
+
      <p><i>Gilles Truan: Lab director at LISBP and former PI of iGEM team Toulouse</i></p>
          <img src="https://static.igem.org/mediawiki/2017/b/b7/T--INSA-UPS_France--Microbioworld_en_Media_LB45.png" alt="">
+
      <p>
        </div>
+
        Mr Truan explained to the audience the principle of iGEM competition and the particularity of the registry, a perfect example of open science. The goal of his intervention was to make people realise that there is other ways to publish experimental results in science and that there are alternatives to patents.
        <div class="card_expl">
+
      </p>
          <div class="card_text">
+
            <p>
+
              <b>Distinctive feature: </b> all non-thermophilic bacteria cannot divide. This card promotes thermophilic organisms.
+
            </p>
+
            <p class="go-further en">
+
              Thermophilic microorganisms are adapted to high temperature areas like volcanoes, hot springs or subsea hydrothermal ventings. High temperatures increase the fluidity of membranes and inactivate some of molecules. Therefore, these microorganisms use different fatty acids to maintain the integrity of their membrane. Thermophilic organisms also contain thermoresistant proteins with a more compact and stable structure.
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
       <div class="card_container" id="full_img113">
+
       <h2>Bettina Couderc : Biotechnologies and health</h2>
        <div class="card_img">
+
      <p><i>Bettina Couderc: Researcher at CRCT and Professor of Biotechnology at Université Paul Sabatier</i></p>
          <img src="https://static.igem.org/mediawiki/2017/0/0a/T--INSA-UPS_France--Microbioworld_en_Media_LBamp.png" alt="">
+
      <p>
        </div>
+
        Mrs Couderc illustrated several aspects of biotechnologies: genome editing, cell therapy and genetic therapy. Her intervention had for main goal to show what are the last breakthroughs in health research, and what are its perspectives in our society; she introduced ethical reflexions on the use of genetic engineering for health.
        <div class="card_expl">
+
      </p>
          <div class="card_text">
+
            <p>
+
              <b>Distinctive feature: </b> all the non-resistant colonies lose 3 log.
+
            </p>
+
            <p class="go-further en">
+
              Ampicillin is a bacteriocin antibiotic, killing the bacteria of the penicillin family. This antibiotic blocks the peptidoglycan production, one of the elements of the cell wall. To do so, it attaches to the enzymes that form the bonds between the molecules forming the peptidoglycan.
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
       <div class="card_container" id="full_img114">
+
       <h2>Vincent Gr&eacute;goire-Delory: Synthetic biology and ethics</h2>
        <div class="card_img">
+
      <p><i>Vincent Gr&eacute;goire-Delory: director of &ldquo;Ecole sup&eacute;rieure d&rsquo;&eacute;thique des sciences&rdquo; (superior school of science ethics) and Professor at &ldquo;Institut Catholique de Toulouse&rdquo; (catholic institute)</i></p>
          <img src="https://static.igem.org/mediawiki/2017/0/0a/T--INSA-UPS_France--Microbioworld_en_Media_LBchlo.png" alt="">
+
      <p>
        </div>
+
        Mr Gr&eacute;goire Delory made an introduction on ethics in synthetic biology, a field in which people are used to consider living things are like machines. We came back to the definition of life: what is a living organism ? He tried to make people questions theirselves on the frontier between natural and artificial things. (see the paragraph 2. below for more informations on ethics in synthetic biology!). We were really pleased to see that those presentations raised a public debate on twitter (see the paragraph 3. below!).
        <div class="card_expl">
+
      </p>
          <div class="card_text">
+
            <p>
+
              <b>Distinctive feature: </b> the non-chloramphenicol resistant bacteria cannot divide.
+
            </p>
+
            <p class="go-further en">
+
              Chloramphenicol is a bacteriostatic antibiotic: it blocks the division of bacteria. It inhibits the production of the proteins needed for division.
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
       <div class="card_container" id="full_img115">
+
       <h2>Sarah Guizou: E. calculus project</h2>
        <div class="card_img">
+
      <p><i>Sarah Guizou: Former iGEMer of the first iGEM Toulouse team in 2013</i></p>
          <img src="https://static.igem.org/mediawiki/2017/a/a1/T--INSA-UPS_France--Microbioworld_en_Media_conta.png" alt="">
+
      <p>
        </div>
+
        Sarah came back in Toulouse to talk about her experience of iGEM. Her project, E. calculus is at the frontier of biology and mathematics. (see more <a href="https://2013.igem.org/Team:INSA_Toulouse"> on their wiki</a>). It was really interesting to talk about mathematics in synthetic biology after the intervention of Vincent Grégoire-Delory.
        <div class="card_expl">
+
       </p>
          <div class="card_text">
+
            <p>
+
              <b>Distinctive feature: </b> A fungus has contaminated the growth medium, its initial log is equal to the number of players + 1. It divides at each round. Players can attack the fungus during their turn. If it dies, the media reverts to LB. If it reaches 10 log, it wins the game ! The media cannot be changed, and transplanting allows players to restart the fungus to the number of players + 1 log.
+
            </p>
+
            <p class="go-further en">
+
              Microorganisms can live nearly everywhere. The microbiologist’s work is done under sterile conditions to avoid any unwanted contaminations. Even if done in the proper conditions, contaminants can grow, sometimes even in a selective medium. This contaminant can rapidly invade the culture media.
+
            </p>
+
          </div>
+
        </div>
+
       </div>
+
  
       <div class="card_container" id="full_img116">
+
       <h2>Benoit Pons and Marine Pons: Api Coli project</h2>
        <div class="card_img">
+
      <p><i>Benoit Pons and Marine Pons: former iGEMers of the iGEM Toulouse team in 2015</i></p>
          <img src="https://static.igem.org/mediawiki/2017/8/8c/T--INSA-UPS_France--Microbioworld_en_Media_Chapman.png" alt="">
+
      <p>
        </div>
+
        Marine and Benoit presented us their project Api Coli, a synthetic biology regulation project to fight against the varroa, a bees parasite. (see more on <a href="https://2015.igem.org/Team:Toulouse">their wiki</a>)
        <div class="card_expl">
+
       </p>
          <div class="card_text">
+
            <p>
+
              <b>Distinctive feature: </b> only the Gram-positive bacteria can divide.
+
            </p>
+
            <p class="go-further en">
+
              Chapman medium is enriched in salts that promote the growth of Gram-positive bacteria, thus separating them. Moreover it can reveal the presence of colonies thanks to a colored marker. This change of color is achieved thanks to the fermentation of mannitol (a natural sweetener used as a nutrient substrate) which acidifies the medium, this acidity is revealed thanks to a dye sensitive to acidity (phenol red).
+
            </p>
+
          </div>
+
        </div>
+
       </div>
+
  
       <div class="card_container" id="full_img117">
+
       <h2>Camille Roux and Manon Barthe: Paleotilis project</h2>
        <div class="card_img">
+
      <p><i>Camille Roux and Manon Barthe: Members of the iGEM Toulouse team last year</i></p>
          <img src="https://static.igem.org/mediawiki/2017/b/bc/T--INSA-UPS_France--Microbioworld_en_Media_mccon.png" alt="">
+
      <p>
        </div>
+
        Camille and Manon presented the same prezi they made last year for the Giant Jamboree and explained their project Paleotilis to the audience. They engineered <i>B. subtilis</i> to kill fungus that destroy the rock painting of the Lascaux cave in France. (see more <a href="https://2016.igem.org/Team:Toulouse_France">on their wiki</a>)
        <div class="card_expl">
+
       </p>
          <div class="card_text">
+
            <p>
+
              <b>Distinctive feature: </b> only the Gram-negative bacteria can divide.
+
            </p>
+
            <p class="go-further en">
+
              Chapman medium is used to separate Gram-negative bacteria. It contains crystal violet and bile salts that slow down the growth of Gram-positive bacteria.  Then like mannitol in Chapman medium, the fermentation of lactose acidifies the medium, allowing to detect more easily the colonies thanks to a dye sensitive to acidity.
+
            </p>
+
          </div>
+
        </div>
+
       </div>
+
  
       <div class="card_container" id="full_img118">
+
       <h2>iGEM Toulouse 2017: Croc&rsquo;n Cholera project</h2>
        <div class="card_img">
+
      <p>
          <img src="https://static.igem.org/mediawiki/2017/0/02/T--INSA-UPS_France--Microbioworld_en_Media_min.png" alt="">
+
        Exactly one month before Boston, this conference was also the opportunity to test our presentation and our ability to answer questions of a scientific public. We were glad to present our work to formers iGEMers of our team, to the guests, to some of our teachers who came for the occasion and to all the students who came at the conference.
        </div>
+
      </p>
        <div class="card_expl">
+
          <div class="card_text">
+
            <p>
+
              <b>Distinctive feature: </b> auxotrophic bacteria (those that cannot synthesize all their molecules) cannot divide.
+
            </p>
+
            <p class="go-further en">
+
              Auxotrophic bacteria need their environment to contain all the nutrients for their growth because they cannot synthesize all molecules that allows them to divide.  For example, amino acid or a vital lipid need to be added to the culture media..  
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
 +
      <h2>Convivial buffet for further discussions</h2>
 +
      <p>
 +
        After the conference, everybody was invited to a buffet to exchange and continue discussions in a friendly ambiance. We had a good time with formers iGEMers, who exchange with us about their experience of iGEM and gave us some secret fun facts about our iGEM instructors… We noted that people were feeling comfortable to talk about ethics after several glasses of Gaillac, an excellent white wine from the region of Toulouse!
 +
      </p>
 +
    </section>
  
      <section>
+
    <section id="cf22">
        <h1>Plasmids cards</h1>
+
      <h1>Awareness on the &ldquo;living-machine&rdquo;: Can we consider the living as a technical object?</h1>
        <p>
+
      <p>
          <b>Rules:</b> Plasmids cards are assets you can add to your bacteria during your turn. It remain attached to your colony during the game (expect special effect). They are 3 plasmid family (red, blue, green). You cannot equip your bacteria with two plasmids of the same family. If you want to change a plasmid for another one of the same family, you need to pick randomly one of the two cards to equip your bacteria and discard the other one.
+
        Here is a short summary we made on several ethical questionings highlighted by Vincent Gregoire-Delory after the conference for people that consult our web site to get access on it!
        </p>
+
      </p>
        <p class="go-further en">
+
      <p>
          Plasmids are round little DNA molecules. Like chromosomal DNA, they own genes, that give new abilities to bacteria that get the plasmid. Plasmids are able to replicate themselves into bacteria, that means generate the synthesis of another similar plasmid thanks to the proteins inside the bacterium. Plasmid replication is possible thanks to a special DNA sequence called the ORI sequene (for replication origin). They are several ORI families and plasmids with the same ORI can’t coexist in one bacterium, one of them will be randomly lost. This phenomenon is called plasmid incompatibility.
+
        Living organisms are not technical objects: they can form themselves from different parts whereas those of the second one are just put together by a designer. However, transplants, organ donation or genetic complementations show us that we can replace defective parts of a living organism just like a machine… In these conditions, can we consider the living as a technical object?
        </p>
+
      </p>
      </section>
+
      <p>
 +
        The point is to know if this comparison has a meaning by questioning ourselves on the relation between art, technique and nature to establish a frontier separating natural and artificial things. Farming and genetics has made some living beings (that already existed independently from human) products of industry and technology. Fruits that we’re consuming, farmed animals, our own body modified by our alimentation, or even the different postures imposed by the use of machines are all artificials things created by our civilisation that made our lives far from the natural processes. Science has moved the frontier between natural and artificial. Do we have to keep this frontier between living and technical tools? Do we have to consider living beings, that are conscious and have feelings like technical tools? Must we criticize this comparison by putting ethics before technics and biology?
 +
      </p>
 +
      <p>
 +
        These are all the questions that we must ask ourselves as scientists, and more so as synthetic biologists, when we are working in our labs! Here begins ethical questionings and awareness.  
 +
      </p>
 +
    </div>
 +
    </section>
  
      <table class="cards_table">
+
    </div>
        <tr>
+
 
          <td id="img120" ><img src="https://static.igem.org/mediawiki/2017/8/8d/T--INSA-UPS_France--Microbioworld_Cards_fr_pTOX-min.png" alt=""></td>
+
    <div class="category-content " id="5">
          <td id="img121" ><img src="https://static.igem.org/mediawiki/2017/9/9c/T--INSA-UPS_France--Microbioworld_Cards_fr_pBIO-min.png" alt=""></td>
+
    <section>
          <td id="img122" ><img src="https://static.igem.org/mediawiki/2017/8/8c/T--INSA-UPS_France--Microbioworld_Cards_fr_pRK-min.png" alt=""></td>
+
      <h1>High school lab</h1>
          <td id="img123" ><img src="https://static.igem.org/mediawiki/2017/c/c6/T--INSA-UPS_France--Microbioworld_Cards_fr_pSYM-min.png" alt=""></td>
+
      <p>
          <td id="img124" ><img src="https://static.igem.org/mediawiki/2017/3/3b/T--INSA-UPS_France--Microbioworld_Cards_fr_pQS-min.png" alt=""></td>
+
        We&rsquo;ve prepared an intervention for High School senior students in scientific classes (between 17 and 18 years old). Our involvement was focused on 3 main goals: implementing a learner-centered pedagogical approach in a high school class, helping pupils know more about biotechnologies through a practical approach, and discussing on &ldquo;how to be part of science, and which studies to choose after high school?&rdquo;.
          <td id="img125" ><img src="https://static.igem.org/mediawiki/2017/4/42/T--INSA-UPS_France--Microbioworld_Cards_fr_pSST6-min.png" alt=""></td>
+
      </p>
          <td id="img126" ><img src="https://static.igem.org/mediawiki/2017/4/42/T--INSA-UPS_France--Microbioworld_Cards_fr_pBR322-min.png" alt=""></td>
+
      <p>
          <td id="img127" ><img src="https://static.igem.org/mediawiki/2017/a/af/T--INSA-UPS_France--Microbioworld_Cards_fr_pSB1C3-min.png" alt=""></td>
+
        Our motivation was to share our experience of the &ldquo;after high school world&rdquo; with young students, explaining them our choices and motivations for studying science, and in particular synthetic biology. We&rsquo;ve designed a special practical work for students to figure out what is the scientific method, and what is the everyday work in a biology laboratory.
          <td id="img128" ><img src="https://static.igem.org/mediawiki/2017/e/e6/T--INSA-UPS_France--Microbioworld_Cards_fr_pADAPT-min.png" alt=""></td>
+
      </p>
          <td id="img129" ><img src="https://static.igem.org/mediawiki/2017/e/e6/T--INSA-UPS_France--Microbioworld_Cards_fr_pPAM-min.png" alt=""></td>
+
    </section>
          <td id="img130" ><img src="https://static.igem.org/mediawiki/2017/b/b7/T--INSA-UPS_France--Microbioworld_Cards_fr_pCHIADE-min.png" alt=""></td>
+
 
        </tr>
+
    <section>
       </table>
+
      <h1>Context: The French educational system applied to teach science and its challenges </h1>
 +
      <p>
 +
        In our French education system, students are selected over short periods (final year in high school and preparatory school), and high school studies mainly focus on theoretical teaching. Preparatory classes and school entrance exams have endowed the scientific disciplines with a selective role. Students must focus their learning on standard exercises that must be reproduced within a given time in order to pass extremely formal examinations (the French Baccalauréat and graduate school entrance exams).  
 +
Educational studies have demonstrated that the best students have acquired solid "scientific background" but often lack "scientific know-how". For the majority of them, knowledge is acquired through repetition, not by any investigative aspiration for autonomy.  
 +
In fact, science does not always function by repetition or transmission. The development of experimental techniques and new knowledge always go hand in hand. It is seemingly impossible to separate the results of speculation, culture or knowledge from what is due to pragmatism, endeavour, or skills. Knowledge and know-how are inseparable in any innovative scientific and technical process.  
 +
The aim is more to merge these skills within the teaching of science. If science is taught from this perspective, it becomes a particularly efficient tool for developing skills in innovation, autonomy, self-learning and creativity (1).
 +
In the view of the current situation, we have chosen to do a practical work based both on a "learning-by-doing method" and on a scientific approach for students to discover a new field of science: biotechnologies.
 +
      </p>
 +
    </section>
 +
    <section>
 +
       <h1>Report on the intervention</h1>
 
        
 
        
       <div class="card_container active" id="full_img120">
+
       <div class="carousel w400 center">
         <div class="card_img">
+
         <div class="indicators">
           <img src="https://static.igem.org/mediawiki/2017/e/ec/T--INSA-UPS_France--Microbioworld_en_p_TOX.png" alt="">
+
           <div class="active" id="ind_img20"></div>
        </div>
+
          <div id="ind_img21"></div>
        <div class="card_expl">
+
           <div id="ind_img22"></div>
           <div class="card_text">
+
          <div id="ind_img23"></div>
            <p>
+
          <div id="ind_img24"></div>
              <b>Distinctive feature:</b> The colony you attack cannot divide during the next turn.
+
          <div id="ind_img25"></div>
            </p>
+
            <p class="go-further en">
+
            The cytoskeleton is a structure made of filaments that maintain the cell size, internal organization and mechanical properties. It is a crucial element, needed for cell division. The YeeV toxin inhibits the enzyme that assembles the filaments of the cytoskeleton, thus blocking cell division. In eukaryotes, like humans or mammals, it is the phalloidin that blocks the cytoskeleton formation. This toxin was taken from <span style="font-style: normal;">Amanita phalloides</span>, a fungus.
+
            </p>
+
          </div>
+
 
         </div>
 
         </div>
 +
        <img src="https://static.igem.org/mediawiki/2017/b/b1/T--INSA-UPS_France--HP_PE_high-school_4.JPG" id="img20" class="active" data-target="img21">   
 +
        <img src="https://static.igem.org/mediawiki/2017/9/91/T--INSA-UPS_France--HP_PE_high-school_5.JPG" id="img21" data-target="img22"> 
 +
        <img src="https://static.igem.org/mediawiki/2017/3/38/T--INSA-UPS_France--HP_PE_high-school_6.JPG" id="img22" data-target="img23"> 
 +
        <img src="https://static.igem.org/mediawiki/2017/7/7b/T--INSA-UPS_France--HP_PE_high-school_3.JPG" id="img23" data-target="img24"> 
 +
        <img src="https://static.igem.org/mediawiki/2017/1/11/T--INSA-UPS_France--HP_PE_high-school_1.jpg" id="img24" data-target="img25"> 
 +
        <img src="https://static.igem.org/mediawiki/2017/c/cd/T--INSA-UPS_France--HP_PE_high-school_2.jpg" id="img25" data-target="img20">   
 
       </div>
 
       </div>
  
       <div class="card_container" id="full_img121">
+
       <h2>What are biotechnologies, and how to be part of it?</h2>
        <div class="card_img">
+
      <p>
          <img src="https://static.igem.org/mediawiki/2017/9/96/T--INSA-UPS_France--Microbioworld_en_p_BIO.png" alt="">
+
        The intervention was divided into 2 parts. First, we made a short presentation (20 minutes) about different fields of biotechnologies, and we chose some prominent examples for each field. The goal of this presentation was to help pupils know more about an unknown field for students that are questioning themselves on their future careers and studies. We made a short introduction about iGEM, and we explained the different studies of the members of the team. We thought that was very important to explain the role of each member in the team because it highlights how a scientific team works and what skills are appreciated in such a team. We hope this approach of the scientific studies made students think about what they really want to do after high school, how to do it, and what could be their role if they chose to work in biotechnologies.
        </div>
+
      </p>
        <div class="card_expl">
+
      <h2>Bacterial transformation: an introduction to molecular biology and microbiology</h2>
          <div class="card_text">
+
      <p>
            <p>
+
        Because we wanted students to understand what kinds of experiments are made in biotechnology laboratories, we’ve prepared a bacterial transformation experiment.
              <b>Distinctive feature:</b> You only lose 1 log when damaged.
+
In a first time, we explained to students what they had in their eppendorf tubes: one containing DNA, and one containing the bacteria <i>E. coli</i>. Then, we started the experiment by mixing gently 10 µL of DNA into the bacteria tube. We noted that students were troubled by manipulating an unknown DNA, which was really a good reaction!
            </p>
+
      </p>
            <p class="go-further en">
+
      <p>
            Microorganisms are able to develop forming a compact and structured pile called biofilm. This type of growth allows the bacteria it contains to respond to external stress (physical attack, acidity, toxins, antibiotics…) like a uniform tissue, by establishing complex communication systems within the biofilm itself. This is a very efficient defence strategy to protect microorganisms against an hostile environment.
+
In a second time, during the "chill on ice" step, we made students question themselves on that question: do you think that DNA is able to enter inside bacteria? We were pleased to hear from students that the membrane will prevent the entry of DNA inside the bacteria. It was the occasion to explain to students the particularity of the bacterial cell wall, and cell wall permeabilization in competent bacteria. We described to them the plasmid map, and made the focus on 3 sequences: the ORI sequence, to approach the notions of DNA replication and bacterial division; the chloramphenicol-resistance sequence, to explain to students why laboratories need to use antibiotic-resistant strains; and the gene encoding the enzyme β-galactosidase, to remind them mechanisms of transcription and translation they had already learnt in class, and to go further, doing an introduction on molecular biology.
            </p>
+
      </p>
          </div>
+
      <p>
        </div>
+
After that, we made the heat shock, and put bacteria at 37°C. We made students question themselves on why we needed to incubate our transformed bacteria before plating them on petri dishes, and they answered that bacteria must repair their membrane and cell wall during this time. We explained them that bacteria needed to express the chloramphenicol resistance gene.
       </div>
+
After making them think on a scientific approach (see 3. c. below), they plated they transformed bacteria on petri dishes.
 +
      </p>
 +
      <h2>From a gene to a function: introduction on biochemistry</h2>
 +
      <p>
 +
Teachers informed us that students had a course the week before about enzymatic reactions. We took the example of the natural reaction catalysed by the β-galactosidase, that hydrolyzes lactose to galactose and glucose to remind them the course they had before. Then, we described the x-gal as a substrate analogue to lactose in this reaction, and explained how the product of reaction becomes blue after a change in structure. We made an in-vitro demonstration of the color shift when adding β-galactosidase in a x-gal solution. We made a transformation of <i>E. coli</i> with a plasmid containing the β-galactosidase gene, we made students question themselves on the in-vivo enzyme activity, and made them think of a scientific approach to demonstrate the β-galactosidase activity in their transformed bacteria (see 3. c. below).
 +
      </p>
 +
    </section>
 +
    <section>
 +
      <h1>Feedback</h1>
 +
      <h2>Students' feedback</h2>
 +
      <p>
 +
In order for us to question our work, we gave them a little survey to fill in at the end of the intervention. The main goal of this survey was to know if we had succeeded in our pedagogical approach:
 +
      </p>
 +
      <p>
 +
Conclusion: according to their answers, we can say that they liked our intervention and found it interesting, in particular experiments. Although some students found the notions difficult, the majority of them were glad to go further than the school program.
 +
Even though there are some improvements to do to be better understood by scientific beginners, we can say that our pedagogical approach was a success because students learnt something new.
 +
      </p>
 +
      <h2>Teachers' feedback</h2>
 +
       <p>
 +
<i>" This intervention has allowed the students to identify themselves to iGEMers, who were high schoolers like them a few years ago and gained experience in the field of science. The feedback of our students is really positive. The practical work was perfectly executed: a good management of the time with an alternance between protocol steps, where students had to make the experiment by themselves, and scientific explanations on different fields of knowledge (microbiology, biochemistry…). There were also interactions and questionings with our students. High school teachers highlights the importance of the pedagogical methods used in this intervention.
 +
We particularly appreciated the anticipation efforts that the iGEM students make to come several times to the high school: they wanted to insure the disponibility and the compatibility of the material for the validation of their protocol (that had to respect the safety rules of our institution). They gave us the protocol soon enough so we were able to insure the feasibility of their intervention for our student’s level in biology. All of our students came back 2 days after the intervention of iGEMers to take pictures of their beautiful petri dishes!
 +
We were happy to be introduced to the project of iGEM Toulouse team on cholera, and encouraged them for the competition in Boston! "</i>
  
       <div class="card_container" id="full_img122">
+
Muriel GRANDJEAN, biology teacher at Lycée P.P. Riquet of Saint Orens
        <div class="card_img">
+
       </p>
          <img src="https://static.igem.org/mediawiki/2017/0/07/T--INSA-UPS_France--Microbioworld_en_p_RK.png" alt="">
+
    </section>
        </div>
+
    <section>
        <div class="card_expl">
+
      <h1>Methods: How to transmit a scientific message to scientific beginners?</h1>
          <div class="card_text">
+
      <h2>Getting inspired by the &ldquo;Learner-centered model&rdquo;</h2>
            <p>
+
      <p>
              <b>Distinctive feature:</b>  During your attack phase, you can steal a plasmid card from your opponent&rsquo;scolony. Put this card in your hand. You can have up to 4 cards in hand.
+
For our educational approach, we’ve been inspired by the "learned-centered pedagogic model", which emphasizes on the student’s interest and motivation. This model highlights the lack of natural learning process in our traditional education system, in which the student’s motivation is mostly based on rewards and punishment in a competitive environment. Natural learning is the way humans learn since birth. It’s a self-motivated and self-directed learning (2).  
            </p>
+
      </p>
            <p class="go-further en">
+
      <p>
              Conjugation is a mechanism that allows a bacterium to transfer plasmids to another one. A donor bacterium possesses a plasmid, and a receiver one is able to initiate conjugation, and will receive the plasmid from the donor. In the game, the “conjugation plasmid” means your colony is the receiver.
+
So our first need was to determine what the motivations of high school senior students classes are. As we discussed earlier, French high school students are focused on two existential questions "What do I want to do after the secondary school?" and "How to get there?". That’s why we chose to share our experience of scientific studies, and open a dialogue between two generations of scientists.
            </p>
+
We focused our opening speech on the discovery of biotechnologies, and how to be part of it after high school, showing the difference between research and engineering in this field in term of skills. We chose to describe what iGEMers of our team have been studied to illustrate complementarity in a scientific team.
          </div>
+
       </p>
        </div>
+
       </div>
+
  
       <div class="card_container" id="full_img123">
+
       <h2>Consulting their school program</h2>
        <div class="card_img">
+
      <p>
          <img src="https://static.igem.org/mediawiki/2017/2/26/T--INSA-UPS_France--Microbioworld_en_p_SYM.png" alt="">
+
To be understood by the young students, we needed to adapt the content of our intervention to their knowledge. For this, their school program was our reference for the conception of the practical work, and to rework on the presentation. We worked with Muriel Grandjean, a high school biology teacher, for the conception of the entire intervention and thanks to her advice we noted that there must be a balance between what students already know, and what you want them to learn during the work. So we based our demonstration on their knowledge, making sure they would not be lost with too much new information. It is essential that learners feel confident with the opening notions of your presentation to establish a dialogue between the learner and the instructor (3).
        </div>
+
      </p>
        <div class="card_expl">
+
      <p>
          <div class="card_text">
+
For the conception of our practical work, the most difficult aspect for us was to adapt our scientific vocabulary. In fact, when we want to teach science, there are specific terms that can’t be simplified, because of scientific rigor. We chose to highlight some important keywords for students to learn the scientific vocabulary. (see our slide presentation for the practical work before)
            <p>
+
      </p>
              <b>Distinctive feature:</b> Choose a colony to be symbiotic with. Each time one of the symbiote divides, the other also divides. This effect does not apply to special division cards (fructose, xylose, glucose or any special division of a bacteria card). If the culture media inhibits the growth of your symbiote, it move of 1 log if you divide yourself.
+
      <h2>Making them question themselves through a scientific approach</h2>
            </p>
+
      <p>
            <p class="go-further en">
+
The scientific method is one of the main objectives of the high school scientific program. It is the foundation of scientific reasoning, giving a specific and predefined plan to follow in the case of a scientific issue/problem/investigation (4) :
            Over time, living organisms have developed different strategies to fit best specific living conditions. For this purpose, some of these organisms evolved to live together so that they benefit from each other, this is called symbiosis.
+
      </p>
            </p>
+
      <p>
          </div>
+
During our intervention, we first explained them new notions about molecular biology and microbiology. Then, we proposed a scientific problem in the view of the previous explanations: is the β-galactosidase activity functional in-vivo after the transformation experiment?
        </div>
+
      </p>
       </div>
+
      <p>
 +
Faced with a problem-situation, hypotheses have to be made and new reasoning has to be induced. The inductive phase is very important for creativity. a large place is often given over to the pleasure of doing science. We let students think in small groups to determine their hypotheses, and we noted 2 main hypotheses: some groups expected that β-galactosidase activity would not be functional into bacteria (hypothesis 1), and some other groups expected that β-galactosidase would (be functional) (hypothesis 2).
 +
      </p>
 +
      <p>
 +
To verify their hypotheses, students assuming the hypothesis 1, and students assuming the hypothesis 2 had to design an experiment to verify their hypothesis, and to predict hypothetic results, and controls. We’ve noted 2 experimental strategies:
 +
      </p>
 +
      <p>
 +
1 - Make 2 liquid cultures with x-gal, one containing our transformed bacteria, and one negative control with wt bacteria. Then make a dosage of galactose, the reaction product: if the galactose concentration is higher in transformed bacteria, it means that the enzyme is functional in-vivo.
 +
      </p>
 +
      <p>
 +
2 - Make 2 petri dishes: one with x-gal, and one without x-gal. Plate our transformed bacteria on those petri dishes and incubate 24h; if there are blue colonies on the x-gal petri dish and white colonies on the other, it means that the enzyme is functional in-vivo.
 +
      </p>
 +
      <p>
 +
For material reasons, we made them conduct the second one, and we added one negative control: the plate of wt bacteria on x-gal petri dishes. Two days after, their teachers showed them the results to make this conclusion: the β-galactosidase activity is functional in-vivo after the transformation experiment. The hypothesis has been confirmed. This deductive phase is very important for objectivity and responsibility. It sometimes appears laborious but it is a prerequisite for scientific rigour.
 +
       </p>
  
      <div class="card_container" id="full_img124">
+
    </section>
        <div class="card_img">
+
          <img src="https://static.igem.org/mediawiki/2017/2/2c/T--INSA-UPS_France--Microbioworld_en_p_QS.png" alt="">
+
        </div>
+
        <div class="card_expl">
+
          <div class="card_text">
+
            <p>
+
              <b>Distinctive feature:</b> you cannot be attacked twice in a row.
+
            </p>
+
            <p class="go-further en">
+
            For a bacterial colony, it is crucial to detect and be detected by other bacteria in the same environment. To do so, they produce specific molecules that are sensed by other bacteria. Then, depending on the molecules that are sensed, a colony &ldquo;knows&rdquo; which bacteria are around. This phenomenon, called quorum sensing, allows bacteria to activate different mechanisms in order to unsettle competitive bacteria, or to better protect themselves.
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
      <div class="card_container" id="full_img125">
+
    <section>
        <div class="card_img">
+
      <h1>Special Thanks</h1>
          <img src="https://static.igem.org/mediawiki/2017/3/39/T--INSA-UPS_France--Microbioworld_en_p_SST.png" alt="">
+
      <p>
        </div>
+
We especially want to thank the “Lycée Pierre Paul Riquet” of Saint Orens (a city next to Toulouse) that allowed us to carry out this work, and particularly Mme Grandjean, a teacher of Biology in this high school, who helped us for the design of our intervention, and the adjustment of our vocabulary for scientific beginners.  
        <div class="card_expl">
+
      </p>
          <div class="card_text">
+
    </section>
            <p>
+
              <b>Distinctive feature:</b>  Your attacks cause twice as much damage.
+
            </p>
+
            <p class="go-further en">
+
            Bacteria have systems to excrete molecules from inside to outside, or even directly inside the opponent bacteria. Type VI secretion system (SST6) is an example of that. It is a structure that looks like an hollow needle able to inject toxic molecules inside a target cell.
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
      <div class="card_container" id="full_img126">
+
    <section>
        <div class="card_img">
+
      <h1>References</h1>
          <img src="https://static.igem.org/mediawiki/2017/a/ad/T--INSA-UPS_France--Microbioworld_en_p_BR.png" alt="">
+
      <ol>
        </div>
+
         <li> L. Bot &amp; al:&rdquo; &lsquo;Learning by doing&rsquo;: a teaching method for active learning in scientific graduate education &ldquo; August 2004</li>
         <div class="card_expl">
+
        <li> J. Scott Armstrong:&rdquo; Natural Learning in Higher Education&rdquo; 1-1-2011</li>
          <div class="card_text">
+
        <li> H. Lenoir : &ldquo;Bases th&eacute;oriques et M&eacute;thodologiques&rdquo; p.31 to 48</li>
            <p>
+
        <li>M. Develay: &ldquo;Sur la m&eacute;thode exp&eacute;rimentale&rdquo;</li>
              <b>Distinctive feature:</b> Your colony is no longer impacted by Ampicillin.
+
      </ol>
            </p>
+
    </section>
            <p class="go-further en">
+
    </div>
            This plasmid contains the ampicillin resistance gene (bla gene) that produces the &beta;-lactamase enzyme, able to cut ampicillin molecules, thus inactivating its antibiotic effect.
+
            </p>
+
          </div>
+
        </div>
+
      </div>
+
  
      <div class="card_container" id="full_img127">
+
    <div class="category-content " id="6">
        <div class="card_img">
+
    <section>
          <img src="https://static.igem.org/mediawiki/2017/f/f8/T--INSA-UPS_France--Microbioworld_en_p_SB.png" alt="">
+
      <h1>Exposciences</h1>
        </div>
+
      <p>
         <div class="card_expl">
+
        We took part to &ldquo;Exposcience&rdquo; which is a scientific festival that took place on the 30th and 31th of May in Toulouse. This festival highlights youths projects by enabling them to present what they have done in relation with science, techniques and environnement. It&rsquo;s an occasion to share, to talk about and to encourage scientific initiatives.  
           <div class="card_text">
+
      </p>
            <p>
+
      <div class="carousel w400 center">
              <b>Distinctive feature:</b> Your colony is no longer impacted by chloramphenicol. 
+
         <div class="indicators">
            </p>
+
           <div class="active" id="ind_img1"></div>
            <p class="go-further en">
+
          <div id="ind_img2"></div>
            This plasmid contains the chloramphenicol resistance gene (caf gene) that produces the acetyltransferase enzyme, able to add chemical groups to chloramphenicol molecules, thus inactivating its antibiotic effect.
+
          <div id="ind_img3"></div>
            </p>
+
           <div id="ind_img4"></div>
           </div>
+
 
         </div>
 
         </div>
 +
        <img src="https://static.igem.org/mediawiki/2017/f/fb/T--INSA-UPS_France--Engagement-Exposciences_1.jpg" alt="" class="active" id="img1" data-target="img2">
 +
        <img src="https://static.igem.org/mediawiki/2017/9/9f/T--INSA-UPS_France--Engagement-Exposciences_2.jpg" alt="" id="img2" data-target="img3">
 +
        <img src="https://static.igem.org/mediawiki/2017/b/b9/T--INSA-UPS_France--Engagement-Exposciences_3.jpg" alt="" id="img3" data-target="img4">
 +
        <img src="https://static.igem.org/mediawiki/2017/e/e4/T--INSA-UPS_France--Engagement-Exposciences_4.jpg" alt="" id="img4" data-target="img1">       
 
       </div>
 
       </div>
 +
      <p>
 +
        We realised that if we want to have an impact on society we should impact children, representing the future of our society. Our motivation to be involved in this event as a mixed team, was to show kids that gender equality is possible in science. We also thought it would be interesting to make them discover the world of science and microorganisms, that often suffers from misconceptions or prejudices. Talking about them with young children, parents and teachers can be a good way to raise awareness for their utility and perspective of use. For the conception of our workshops, we wanted to make children participate and interact with us, so that they&rsquo;ll remember the most of our interventions, and practice a scientific experiment by themselves. In our interactions we tried to incite girls to participate as much as boys so that they gain confidence in themselves and in what they&rsquo;re capable of.
 +
      </p>
 +
      <p>
 +
        We chose to make children do a banana DNA extraction thanks to simple ingredients that they can find in their kitchen. The goal of this workshop was to make children understand what is DNA, where can we find it, what is its goal and what is its nature. If you want to do this workshop, you can use our protocol below:
 +
      </p>
 +
      <object data="https://static.igem.org/mediawiki/2017/4/49/T--INSA-UPS_France--PE_DNA-extraction-protocol.pdf" type="application/pdf" width="550px" height="700px" title="DNA extraction protocol"></object>
 +
      <p>
 +
        For the most shy children, we made a fortune teller about microorganisms. We observed that they indeed folded it and played with each other, asking questions about microbiology. We realised that it is a good tool for children to get interested in science.
 +
      </p>
 +
      <img src="https://static.igem.org/mediawiki/2017/1/10/T--INSA-UPS_France--HP-PE_pouetpouet_patron.png" alt="">
 +
      <p>
 +
        We also discussed with them about microorganisms by the mean of games and for the most interested, we explained our iGEM project Croc&rsquo;n Cholera: it was a good opportunity for us to do a survey about cholera to measure the level of knowledge of the public on this matter and to raise awareness concerning this disease.
 +
      </p>
 +
    </section>
 +
    </div>
  
      <div class="card_container" id="full_img128">
 
        <div class="card_img">
 
          <img src="https://static.igem.org/mediawiki/2017/8/83/T--INSA-UPS_France--Microbioworld_en_p_AD.png" alt="">
 
        </div>
 
        <div class="card_expl">
 
          <div class="card_text">
 
            <p>
 
              <b>Distinctive feature:</b>  you can draw a card and attack a colony during your turn.
 
            </p>
 
            <p class="go-further en">
 
            When a colony are close to other bacteria, it must elaborate new strategy to avoid attacks or pressure of competitor. In this context, those who can adapt themselves quickly are advantaged. Adaptation is defined by the gain of a new function / of a new gene (in the card game, it’s illustrated by picking a card).
 
            </p>
 
          </div>
 
        </div>
 
      </div>
 
  
      <div class="card_container" id="full_img129">
+
    <div class="category-content " id="7">
        <div class="card_img">
+
    <section>
          <img src="https://static.igem.org/mediawiki/2017/5/5f/T--INSA-UPS_France--Microbioworld_en_p_PAM.png" alt="">
+
      <h1>Campus exhibitions</h1>
        </div>
+
      <p>
        <div class="card_expl">
+
        We realised that students of the scientific campus are not aware of iGEM Toulouse projects, and in general of synthetic biology issues. So we organised exhibitions at INSA Toulouse and Université Paul Sabatier library to highlight former iGEM Toulouse project and potential of synthetic biology.  
          <div class="card_text">
+
      </p>
            <p>
+
      <p>
              <b>Distinctive feature:</b>  During your attacks, you can excrete antimicrobial peptides aiming to a second target colony: it loses 1 log.
+
        In order to make iGEM project understandable for all scientist student (and not only for biologists), we redesigned posters of previous project E. calculus, SubtiTree, ApiColi, Paleotilis, and of our project Croc&rsquo;n Cholera. A poster on iGEM and Synthetic Biology was also created as well as an other explaining what cloning is. Indeed, it is a basic technique used in synthetic biology. We also created a timeline with photos illustrating the key moments of our adventure in the iGEM competition this year. A computer was freely accessible to go on our Wiki.
            </p>
+
      </p>
            <p class="go-further en">
+
      <div class="carousel w400 center">
            This plasmid contains the genes for antimicrobial peptides, capable to create porous into the bacterial membrane. The cytoplasm (inside the bacteria) drains outside the bacteria, and the bacteria dies. Those peptides are usually produce by other organisms to fight against infection of pathogenic bacteria.
+
        <div class="indicators">
            </p>
+
           <div class="active" id="ind_img10"></div>
           </div>
+
          <div id="ind_img11"></div>
 
         </div>
 
         </div>
 +
        <img src="https://static.igem.org/mediawiki/2017/6/62/T--INSA-UPS_France--HP_PE_campus_1.JPG" alt="" class="active" id="img10" data-target="img11">
 +
        <img src="https://static.igem.org/mediawiki/2017/9/94/T--INSA-UPS_France--HP_PE_campus_2.JPG" alt="" id="img11" data-target="img10">     
 
       </div>
 
       </div>
  
       <div class="card_container" id="full_img130">
+
      <p>
         <div class="card_img">
+
        To make this exhibition more interactive, we organized a &quot;Discovery of Biology&quot; workshop at Bib'INSA. For a whole afternoon, we held a booth with different workshops to explain to students what biology is (our Microbioworld card game, our Possible/Impossible quizz, DNA extraction and bioluminescent bacteria: you can go on the "Researcher's night" event to know more about it).
           <img src="https://static.igem.org/mediawiki/2017/7/77/T--INSA-UPS_France--Microbioworld_en_p_chi.png" alt="">
+
      </p>
        </div>
+
 
        <div class="card_expl">
+
       <div class="carousel w400 center">
           <div class="card_text">
+
         <div class="indicators">
            <p>
+
           <div class="active" id="ind_img12"></div>
              <b>Distinctive feature:</b>
+
           <div id="ind_img13"></div>
            </p>
+
          <div id="ind_img14"></div>
            <ul>
+
              <li>With 1 chiad&eacute; plasmid, nothing happens</li>
+
              <li>With 2 chiad&eacute; plasmids, you can do 2 actions at your turn (you can do twice the same action)</li>
+
              <li>With 3 chiad&eacute; plasmids, you can do 3 actions at your turn.</li>
+
            </ul>
+
            <p class="go-further en">
+
            In synthetic biology, this french word qualify a complex and highly regulated genetic system that confere to bacteria badass effects. Synthetic biology allows to create new functions in organisms or transfer functions from an organism to another. This field is controlled by technical specifications to avoid GMO spreading (for example).
+
            </p>
+
          </div>
+
 
         </div>
 
         </div>
 +
        <img src="https://static.igem.org/mediawiki/2017/7/74/T--INSA-UPS_France--HP_PE_campus_3.JPG" alt="" class="active" id="img12" data-target="img13">
 +
        <img src="https://static.igem.org/mediawiki/2017/f/ff/T--INSA-UPS_France--HP_PE_campus_4.JPG" alt="" id="img13" data-target="img14">     
 +
        <img src="https://static.igem.org/mediawiki/2017/8/80/T--INSA-UPS_France--HP_PE_campus_5.JPG" alt="" id="img14" data-target="img12"> 
 
       </div>
 
       </div>
  
 +
      <p>
 +
        Finally, another workshop was proposed to speak about synthetic biology by showing them pink or blue bacteria. We explained to them the cloning technique for the insertion of a DNA fragment which can for example encode for a colored molecule, then making the bacterium pink or blue.
 +
      </p>
 +
    </section>
 +
    </div>
  
      <section style="background:none;">
+
    <div class="category-content " id="8">
        <h1>Events cards</h1>
+
    <section style="background:none;">
      </section>
+
      <h1>Press &amp; Media</h1>
 +
    </section>  
  
 +
      <style>
 +
      .right_container{
 +
          width:70%;
 +
          margin-left:30%;
 +
      }
 +
      /* ASIDE NAV */
 +
        .left_container{
 +
          width:25%;
 +
          padding:0px;
 +
          margin:0px;
 +
          display:inline-block;
 +
          font-family: 'Quicksand', sans-serif;
 +
          font-weight: 400;
 +
          font-size:16pt;
 +
          text-align: right;
 +
        }
 +
        .left_container img{
 +
          width:100%;
 +
        }
 +
        .right_container section{
 +
          border-top-left-radius: 0px;
 +
          border-top-right-radius: 60px;
 +
          border-bottom-left-radius: 60px;
 +
          border-bottom-right-radius: 60px;
 +
          margin-top:0px;
 +
        }
 +
        section a{
 +
          color:#4f6649;
 +
        }
 +
        section a:hover, section a:visited{
 +
          font-style: italic;
 +
        }
 +
      </style>
  
       <table class="cards_table">
+
       <div class="left_container">
         <tr>
+
         <img style="width:60%;" src="https://static.igem.org/mediawiki/2017/b/b9/T--INSA-UPS_France--Media_logo-20minutes.png" alt="">
          <td id="img140" ><img src="https://static.igem.org/mediawiki/2017/c/c4/T--INSA-UPS_France--Microbioworld_Cards_fr_repiqu-min.png" alt=""></td>
+
          <td id="img141" ><img src="https://static.igem.org/mediawiki/2017/a/ae/T--INSA-UPS_France--Microbioworld_Cards_fr_bvcs-min.png" alt=""></td>
+
          <td id="img142" ><img src="https://static.igem.org/mediawiki/2017/e/e0/T--INSA-UPS_France--Microbioworld_Cards_fr_trait-min.png" alt=""></td>
+
          <td id="img143" ><img src="https://static.igem.org/mediawiki/2017/1/10/T--INSA-UPS_France--Microbioworld_Cards_fr_sugar-min.png" alt=""></td>
+
          <td id="img144" ><img src="https://static.igem.org/mediawiki/2017/b/b8/T--INSA-UPS_France--Microbioworld_Cards_fr_trans-min.png" alt=""></td>
+
          <td id="img145" ><img src="https://static.igem.org/mediawiki/2017/a/a1/T--INSA-UPS_France--Microbioworld_Cards_fr_Att-min.png" alt=""></td>
+
          <td id="img146" ><img src="https://static.igem.org/mediawiki/2017/2/2e/T--INSA-UPS_France--Microbioworld_Cards_fr_immuno-min.png" alt=""></td>
+
        </tr>
+
      </table>
+
     
+
      <div class="card_container active" id="full_img140">
+
        <div class="card_img">
+
          <img src="https://static.igem.org/mediawiki/2017/6/67/T--INSA-UPS_France--Microbioworld_en_event_pass.png" alt="">
+
        </div>
+
        <div class="card_expl">
+
          <div class="card_text">
+
            <p>
+
              <b>Distinctive feature: </b>Growth medium changes! Turn the first card of the media stack, it becomes the growth medium for all the bacteria. Play this card only at your turn.
+
            </p>
+
            <p class="go-further en">
+
              In the laboratory transplanting means taking a bacteria colony and put it on another growth medium.
+
            </p>
+
          </div>
+
        </div>
+
 
       </div>
 
       </div>
 
+
       <div class="right_container">
       <div class="card_container" id="full_img141">
+
         <section>
         <div class="card_img">
+
           <p>
           <img src="https://static.igem.org/mediawiki/2017/6/6c/T--INSA-UPS_France--Microbioworld_en_event_bvsc.png" alt="">
+
             The <i>20 minutes</i> is a daily free generalist newspaper aimed at commuters who want quick and concise information, reaching a wide audience. We appeared in the regional section of the online version of it. Thus we were pleased to reach the local inhabitants to mobilize them and make them know about science initiatives in their living area.
        </div>
+
          </p>
        <div class="card_expl">
+
          <p>
          <div class="card_text">
+
            <a href="http://www.20minutes.fr/toulouse/2123171-20170829-toulouse-etudiants-imitent-crocodile-attaquer-cholera">Click here to read the full article (in french)</a>
             <p>
+
           </p>
              <b>Distinctive feature: </b>once this card is played, the bacillus team confronts the coccus team. You must play this card as soon as you draw it, it is discarded when one of team wins.
+
         </section>
            </p>
+
            <p class="go-further en">
+
              Bacillus and coccus are different types of bacteria, respectively rod and round-shaped. This card was mostly designed to show the diversity of shapes but bacteria do not naturally have affinity according to their shape.
+
            </p>
+
           </div>
+
         </div>
+
 
       </div>
 
       </div>
  
       <div class="card_container" id="full_img142">
+
       <div class="left_container">
         <div class="card_img">
+
         <img style="width:60%;" src="https://static.igem.org/mediawiki/2017/7/7c/T--INSA-UPS_France--Media_logo-actutoulouse.png" alt="">
          <img src="https://static.igem.org/mediawiki/2017/5/52/T--INSA-UPS_France--Microbioworld_en_event_med.png" alt="">
+
      </div>    
        </div>
+
      <div class="right_container">
        <div class="card_expl">
+
        <section>
          <div class="card_text">
+
          <p>
            <p>
+
          <i>Cot&eacute; Toulouse</i> is a weekly free paper aiming to deliver all the local information. Once again we were pleased to reach at the local inhabitants of Toulouse to show them what the students of their city are doing and to mobilize them around the project.
              <b>Distinctive feature: </b>all human pathogen colonies loses 2 log. Discard after use.
+
          </p>
            </p>
+
          <p>
            <p class="go-further en">
+
            <a href="https://actu.fr/occitanie/toulouse_31555/a-toulouse-etudiants-travaillent-sur-une-molecule-crocodile-lutter-contre-cholera_11690457.html">Click here to read the full article (in french) </a>
              In case of wound or infection, antiseptics and antibiotics are used to protect or treat the organism. These agents reduce the bacterial proliferation but the infection can start again when the treatment is stopped. This relapse especially occur when the immune system is weak.
+
           </p>
            </p>
+
         </section>
           </div>
+
         </div>
+
 
       </div>
 
       </div>
  
       <div class="card_container" id="full_img143">
+
       <div class="left_container">
         <div class="card_img">
+
         <img src="https://static.igem.org/mediawiki/2017/b/ba/T--INSA-UPS_France--Media_logo-ladepeche.png" alt="">
          <img src=https://static.igem.org/mediawiki/2017/f/ff/T--INSA-UPS_France--Microbioworld_en_event_glu.png"" alt="">
+
      </div>    
        </div>
+
      <div class="right_container">
        <div class="card_expl">
+
        <section>
          <div class="card_text">
+
          <p>
            <p>
+
          <i>La d&eacute;p&ecirc;che du midi</i> is a regional daily newspaper sold in approximately 150,000 copies everyday. Thus it reaches a wide public living in a large area. This publication was an opportunity to make this audience discover our project and to tickle their curiosity to learn more.
              <b>Distinctive feature: </b>during your next division you will win 1 extra log (+ 2 log). Discard this card after use.
+
          </p>
            </p>
+
          <p>
            <p class="go-further en">
+
            <a href="https://www.ladepeche.fr/article/2017/09/01/2637267-neuf-etudiants-travaillent-crocodile-lutter-contre-cholera.html">Click here to read the full article (in french) </a>
              Fructose, galactose and xylose provides additional carbon source to the colony, improving its division. It is a very common sugar in nature.
+
          </p>
              <br />
+
         </section>
              Glucose is one of the most efficient sugars to support the bacterial growth. To optimize its consumption, bacteria often have systems of regulation to consume glucose before any other carbon source.
+
            </p>
+
          </div>
+
         </div>
+
 
       </div>
 
       </div>
  
       <div class="card_container" id="full_img144">
+
       <div class="left_container">
         <div class="card_img">
+
         <img src="https://static.igem.org/mediawiki/2017/2/27/T--INSA-UPS_France--Media_logo-ljdd.png" alt="">
          <img src="https://static.igem.org/mediawiki/2017/d/d3/T--INSA-UPS_France--Microbioworld_en_event_trans.png" alt="">
+
      </div>    
        </div>
+
      <div class="right_container">
        <div class="card_expl">
+
        <section>
          <div class="card_text">
+
          <p>
            <p>
+
          After being interviewed by local and regional newspaper we were thrilled that <i>Le Journal du Dimanche</i> published an article about our project. Indeed it is a weekly national newspaper reaching around 200,000 people. This article obviously gave our team a national exposure, along with synthetic biology and the iGEM competition. We hope that this article tickled the curiosity of many french people.
              <b>Distinctive feature: </b>you can play the transposon on the plasmid of one of your opponents, it is immediately discarded.
+
          </p>
            </p>
+
          <p>
            <p class="go-further en">
+
            <a href="http://www.lejdd.fr/societe/sciences/pourquoi-le-crocodile-resiste-au-cholera-3430838">Click here to read the full article (in french) </a>
              Transposable elements are DNA sequences that can change their position within a genome. They can extract themselves and insert in another locus (in a chromosomal DNA or a plasmid). Their integration can create mutations (that can lead to the malfunction or an inactivation of a gene). They exist in all living organisms and are powerful evolution trigger.
+
           </p>
            </p>
+
         </section>
           </div>
+
         </div>
+
 
       </div>
 
       </div>
  
       <div class="card_container" id="full_img145">
+
       <div class="left_container">
         <div class="card_img">
+
         <img src="https://static.igem.org/mediawiki/2017/a/ab/T--INSA-UPS_France--Media_logo-ajd.png" alt="">
          <img src="https://static.igem.org/mediawiki/2017/2/2e/T--INSA-UPS_France--Microbioworld_en_event_phage.png" alt="">
+
        <img src="https://static.igem.org/mediawiki/2017/2/24/T--INSA-UPS_France--Media_logo-leparisien.png" alt="">
        </div>
+
      </div>    
        <div class="card_expl">
+
      <div class="right_container">
          <div class="card_text">
+
        <section>
            <p>
+
          <p>
              <b>Distinctive feature: </b>choose the direction in which the phage is spreading. During the attack you lose 1 log, your neighbour 2 and his neighbour 3.
+
          <i>Aujourd&rsquo;hui en France</i> is a national weekly newspaper gathering almost 140,000 readers every day. It emphasis the interesting regional initiatives in France, giving them more exposure. We were thus delighted to be part of these noteworthy projects.
            </p>
+
          </p>
            <p class="go-further en">
+
          <p>
              Phages are like viruses that target bacteria. They are only composed of a protein structure that contains their DNA and allows them to anchor on their bacterial prey. Their DNA is then injected inside the bacterium where they replicate, thus producing new phages. This mechanism can result in the cell lysis (cell death), hence in the release of newly created phages in the environment, leading to the infection of further bacteria.
+
            <a href="http://www.leparisien.fr/vie-quotidienne/sante/les-crocodiles-armes-anticholera-05-09-2017-7235709.php">Click here to read the full article (in french) </a>
            </p>
+
           </p>
           </div>
+
         </section>
         </div>
+
 
       </div>
 
       </div>
  
       <div class="card_container" id="full_img146">
+
       <div class="left_container">
         <div class="card_img">
+
         <img src="https://static.igem.org/mediawiki/2017/d/d5/T--INSA-UPS_France--Media_logo-frinfo.png" alt="">
          <img src="https://static.igem.org/mediawiki/2017/3/3d/T--INSA-UPS_France--Microbioworld_en_event_immuno.png" alt="">
+
      </div>    
        </div>
+
      <div class="right_container">
        <div class="card_expl">
+
        <section>
          <div class="card_text">
+
          <p>
            <p>
+
          Our project was also presented in the online version of France info which is a french radio. Some members of the team were interviewed by the journalist and it was a good practice to present our project in a popularized way with our words.
              <b>Distinctive feature: </b>all human pathogens win + 2 log. Discard after use.
+
          </p>
            </p>
+
          <p>
            <p class="go-further en">
+
            <a href="http://www.francetvinfo.fr/sante/decouverte-scientifique/pour-lutter-contre-le-cholera-des-etudiants-chercheurs-francais-misent-sur-le-crocodile_2364949.html">Click here to read &amp; listen the full article (in french) </a>
              Pathogen bacteria are often commensal, meaning that they are living on or in their host but they do not trigger symptoms. An equilibrium is reached between the bacteria and the immune system of the host. A weakening of this immune system can lead to the thriving of the bacteria and the installation of the pathology.
+
           </p>
            </p>
+
         </section>
           </div>
+
         </div>
+
 
       </div>
 
       </div>
 
 
 
     </div>
 
     </div>
 
+
    <!-- fin section -->   
  
 
   </div>
 
   </div>
 
   </div>
 
   </div>
  <style>
 
  
footer{
 
  position:relative;
 
  text-align:center;
 
  margin-top:20px;
 
  background: #323537;
 
  width:100%;
 
}
 
 
/* CONTACT ICONS */
 
 
.icons{ 
 
  display:inline-block;
 
  margin:40px 0;
 
 
 
}
 
 
.icons > a{
 
  color:black;
 
  margin:10px;
 
  text-shadow:2px 2px 0px white;
 
}
 
 
#fbIcon:hover{
 
  color:#3b5998;
 
  text-shadow:2px 2px 0 #000000;
 
}
 
 
#twitterIcon:hover{
 
  color:#55acee;
 
  text-shadow:2px 2px 0 #000000;
 
}
 
 
#contactIcon:hover{
 
  color:#e5e5e5;
 
  text-shadow:2px 2px 0 #000000;
 
}
 
#instaIcon:hover{
 
  color:#8a3ab9;
 
  text-shadow:2px 2px 0 #000000;
 
}
 
 
/* SPONSORS IMG */
 
 
.footer_sponsors img{
 
  max-height:50px;
 
  display:inline-block;
 
  margin:10px;
 
  opacity:0.5;
 
}
 
.footer_sponsors img:hover{
 
  opacity:1;
 
}
 
 
</style>
 
 
   <footer>
 
   <footer>
 
      
 
      
Line 1,753: Line 1,376:
 
   </div>
 
   </div>
 
   </main>
 
   </main>
 +
 +
  
 
<!-- C O N T E N T -->
 
<!-- C O N T E N T -->
 +
  
 
<script type="text/javascript">
 
<script type="text/javascript">
 +
 
 +
    // CAROUSEL
  
  $(document).on("click",".step > div", function(){
+
    $(document).ready(function(){
    var target_str=$(this).data("target");
+
 
    var target=parseInt(target_str);
+
      // Défilement auto
    // Descr
+
      setInterval(
    $('.step-descr').removeClass('active-step');
+
        function()
    $("#step-"+target_str).addClass('active-step');
+
        {
     // Step & path
+
        var id_go=$(".carousel img.active").attr('id');
     $('.step-path > div').removeClass('active-path');
+
        var id_next=$("#"+id_go).data('target');
    $('.step > div').removeClass('previous-step');
+
        $("#ind_"+id_go).removeClass("active");
    $('.step > div').removeClass('selected-step');
+
        $("#ind_"+id_next).addClass("active");
    $(this).addClass('selected-step');
+
        $("#"+id_go).stop().animate({ left:"-100%"}, function(){
    for (i=1; i<=target; i++){
+
          $("#"+id_go).removeClass("active");
      $('#path-'+i).addClass('active-path');
+
          $("#"+id_go).css("left","100%");
      $('[data-target="'+(i-1)+'"]').addClass('previous-step');
+
        });
    }
+
        $("#"+id_next).stop().animate({left:0}, function(){
  });
+
          $("#"+id_next).addClass("active");
 +
        });
 +
        }, 4000);
 +
    });
 +
     // au click
 +
     $(".carousel img").click(function(){
 +
      var id_go=$(this).attr('id');
 +
      var id_next=$(this).data('target');
 +
      $("#ind_"+id_go).removeClass("active");
 +
      $("#ind_"+id_next).addClass("active");
 +
      $("#"+id_go).stop().animate({ left:"-100%"}, function(){
 +
        $("#"+id_go).removeClass("active");
 +
        $("#"+id_go).css("left","100%");
 +
      });
 +
      $("#"+id_next).stop().animate({left:0}, function(){
 +
        $("#"+id_next).addClass("active");
 +
      })     
 +
    });
 
</script>
 
</script>
  
 
<script type="text/javascript">
 
<script type="text/javascript">
   $(document).ready(function(){
+
   $(document).on("click",".pe-category-inside", function(){
 +
      var target = $(this).data("target");
 +
      $('.pe-category-inside').removeClass('category-selected');
 +
      $(this).addClass('category-selected');
 +
      $('.category-content').removeClass("visible");
 +
      $("#"+target).addClass("visible");
 +
      console.log("target: "+target+ "pos: "+($("#"+target).position().top));
 +
      // Smooth scroll to the category
 +
      var c_0 = $("#"+target).position().top-70;
 +
      $('.main_content').animate({scrollTop: c_0 }, 1000);
  
    $(document).on("click",".cards_table td", function(){
 
      var id_go=$(this).attr('id');     
 
      $(this).siblings('td').each(function(){
 
        $(this).removeClass('active');
 
      });
 
      $(this).closest('table').siblings('.card_container').each(function(){
 
        $(this).removeClass('active');
 
      });
 
 
      $("#"+id_go).addClass("active");
 
      $("#full_"+id_go).addClass("active");
 
 
     });
 
     });
 +
</script>
  
    // LANGUAGE CHANGING
+
<script type="text/javascript">
    $("#fr_flag").click(function(){
+
  // WORKSHOP
        $('body').removeClass('en');
+
  $(document).on("click",".workshop-img", function(){
        $('body').addClass('fr');
+
      $(".workshop-img").removeClass("active-workshop");
 +
      $(this).addClass("active-workshop");
 +
      var target = $(this).data("target");
 +
      $('.workshop-descr').removeClass('visible-workshop');
 +
      $('#workshop-'+target).addClass('visible-workshop');
 
     });
 
     });
    $("#en_flag").click(function(){
+
  // CLICK ON SUMMARY ITEM --> go to data-number
         $('body').removeClass('fr');
+
  $(document).on("click",".summary-left ul li", function(){
         $('body').addClass('en');
+
      var target = $(this).data("number");
 +
      var c_0;
 +
      if($('*[data-target="1"]').hasClass('category-selected')){
 +
        c_0 = $("#sc"+target).position().top-50;
 +
        $('.main_content').animate({scrollTop: c_0 }, 500);
 +
      }
 +
      else{
 +
         if($('*[data-target="2"]').hasClass('category-selected')){
 +
          c_0 = $("#cg"+target).position().top-50;
 +
          $('.main_content').animate({scrollTop: c_0 }, 500);
 +
         }
 +
        else{
 +
          if($('*[data-target="3"]').hasClass('category-selected')){
 +
            c_0 = $("#rn"+target).position().top-50;
 +
            $('.main_content').animate({scrollTop: c_0 }, 500);
 +
          }
 +
          else{
 +
            if($('*[data-target="4"]').hasClass('category-selected')){
 +
              c_0 = $("#cf"+target).position().top-50;
 +
              $('.main_content').animate({scrollTop: c_0 }, 500);
 +
            }
 +
          }
 +
        }
 +
      }
 
     });
 
     });
 +
</script>
  
     });
+
<script type="text/javascript">
 +
  $('.main_content').scroll(function(){
 +
     var pos = $('.main_content').scrollTop();
 +
    // SCHOOL
 +
    if($('*[data-target="1"]').hasClass('category-selected')){
 +
      if(pos>$("#sc1").position().top-70){
 +
        $('.summary-left ul li').css("font-weight", "normal");
 +
        $('*[data-number="1"]').css("font-weight", "bold");
 +
        if(pos>$("#sc2").position().top-70){
 +
          $('.summary-left ul li').css("font-weight", "normal");
 +
          $('*[data-number="2"]').css("font-weight", "bold");
 +
          if(pos>$("#sc3").position().top-70){
 +
            $('.summary-left ul li').css("font-weight", "normal");
 +
            $('*[data-number="3"]').css("font-weight", "bold");
 +
            if(pos>$("#sc4").position().top-70){
 +
              $('.summary-left ul li').css("font-weight", "normal");
 +
              $('*[data-number="4"]').css("font-weight", "bold");
 +
              if(pos>$("#sc5").position().top-70){
 +
                $('.summary-left ul li').css("font-weight", "normal");
 +
                $('*[data-number="5"]').css("font-weight", "bold");
 +
                if(pos>$("#sc6").position().top-70){
 +
                  $('.summary-left ul li').css("font-weight", "normal");
 +
                  $('*[data-number="6"]').css("font-weight", "bold");
 +
                  if(pos>$("#sc7").position().top-70){
 +
                    $('.summary-left ul li').css("font-weight", "normal");
 +
                  $('*[data-number="7"]').css("font-weight", "bold");
 +
                    if(pos>$("#sc8").position().top-70){
 +
                      $('.summary-left ul li').css("font-weight", "normal");
 +
                      $('*[data-number="8"]').css("font-weight", "bold");
 +
                    }
 +
                  }
 +
                }
 +
              }
 +
            }
 +
          }
 +
        }
 +
      }
 +
      // FIXED ASIDE NAV
 +
      if(pos>$("#sc1").position().top){
 +
        $('.summary-left').addClass("summary-fixed");
 +
      }
 +
      else{
 +
        $('.summary-left').removeClass("summary-fixed");
 +
      }
 +
    }
 +
 
 +
    // CARD GAME
 +
    if($('*[data-target="2"]').hasClass('category-selected')){
 +
      if(pos>$("#cg9").position().top-70){
 +
        $('.summary-left ul li').css("font-weight", "normal");
 +
        $('*[data-number="9"]').css("font-weight", "bold");
 +
        if(pos>$("#cg10").position().top-70){
 +
          $('.summary-left ul li').css("font-weight", "normal");
 +
          $('*[data-number="10"]').css("font-weight", "bold");
 +
          if(pos>$("#cg11").position().top-70){
 +
            $('.summary-left ul li').css("font-weight", "normal");
 +
            $('*[data-number="11"]').css("font-weight", "bold");
 +
            if(pos>$("#cg12").position().top-70){
 +
              $('.summary-left ul li').css("font-weight", "normal");
 +
              $('*[data-number="12"]').css("font-weight", "bold");
 +
            }
 +
          }
 +
        }
 +
      }
 +
      // FIXED ASIDE NAV
 +
      if(pos>$("#cg9").position().top){
 +
        $('.summary-left').addClass("summary-fixed");
 +
      }
 +
      else{
 +
        $('.summary-left').removeClass("summary-fixed");
 +
      }
 +
    }
 +
 
 +
    // RESEARCHER'S NIGHT
 +
    if($('*[data-target="3"]').hasClass('category-selected')){   
 +
      if(pos>$("#rn15").position().top-70){
 +
        $('.summary-left ul li').css("font-weight", "normal");
 +
        $('*[data-number="15"]').css("font-weight", "bold");
 +
        if(pos>$("#rn16").position().top-70){
 +
          $('.summary-left ul li').css("font-weight", "normal");
 +
          $('*[data-number="16"]').css("font-weight", "bold");
 +
          if(pos>$("#rn17").position().top-70){
 +
            $('.summary-left ul li').css("font-weight", "normal");
 +
            $('*[data-number="17"]').css("font-weight", "bold");
 +
            if(pos>$("#rn18").position().top-70){
 +
              $('.summary-left ul li').css("font-weight", "normal");
 +
              $('*[data-number="18"]').css("font-weight", "bold");
 +
            }
 +
          }
 +
        }
 +
      }
 +
      // FIXED ASIDE NAV
 +
      if(pos>$("#rn15").position().top){
 +
        $('.summary-left').addClass("summary-fixed");
 +
      }
 +
      else{
 +
        $('.summary-left').removeClass("summary-fixed");
 +
      }
 +
    }
 +
   
 +
    // CONF
 +
    if($('*[data-target="4"]').hasClass('category-selected')){
 +
      if(pos>$("#cf20").position().top-70){
 +
        $('.summary-left ul li').css("font-weight", "normal");
 +
        $('*[data-number="20"]').css("font-weight", "bold");
 +
        if(pos>$("#cf21").position().top-70){
 +
          $('.summary-left ul li').css("font-weight", "normal");
 +
          $('*[data-number="21"]').css("font-weight", "bold");
 +
          if(pos>$("#cf22").position().top-70){
 +
            $('.summary-left ul li').css("font-weight", "normal");
 +
            $('*[data-number="22"]').css("font-weight", "bold");
 +
            if(pos>$("#cf23").position().top-70){
 +
              $('.summary-left ul li').css("font-weight", "normal");
 +
              $('*[data-number="23"]').css("font-weight", "bold");
 +
            }
 +
          }
 +
        }
 +
      }
 +
      // FIXED ASIDE NAV
 +
      if(pos>$("#cf20").position().top){
 +
        $('.summary-left').addClass("summary-fixed");
 +
      }
 +
      else{
 +
        $('.summary-left').removeClass("summary-fixed");
 +
      }
 +
    }
 +
  });
 
</script>
 
</script>
  

Latest revision as of 15:19, 27 October 2017

Public Engagement & Education

We wanted to show that it is possible to talk about biology, science in general and ethics with people from all ages and with different knowledges. We have articulated our outreach strategy around three actions: discover, practice and discuss, to empower citizens or future citizens about their capability of exchange and acting on science. These three milestones are essential for us to give people a better understanding of the current challenges of science in the society.

Discover

The first question to be asked to popularise biology is “how to reach people?”

In order to make synthetic biology accessible to a wider audience, we had to adapt our speeches and supports to the different people we have met. We had to built ad hoc communicative tools (workshops, card game...) to engage a young or non-scientific public in learning about different fields of biology.

Practice

One of the most important thing in science is scientific methods and experiments. In order to give a better understanding of the globality of the scientific work, we thought it was a good idea to make people do lab experiments. Moreover, practise often results in scientific and ethical questioning.

Discuss

Our biggest challenge is to open up the debate about synthetic biology, by bringing forward major scientific breakthrough but also showing that there is a need to think about ethical and technical limits. We want to address some controversial topics with the public such as limits and potentials of synthetic biology, ethics in science, GMOs legislation…

As our project is focused on microorganisms in public health, it can be kind of scary for the general public. So we wanted for our public engagement strategy to show how microbial diversity affects our world.

Click on one of the event we took part into see how we developed it in this aim.

School Education

Card Game

European Researcher's Night

Seminar

High School Lab

Exposciences

Exhibitions on campus

Press

  • School Education
  • Rising curiosity
  • Questions
  • Representations
  • Analysis
  • Workshops
  • Results
  • Conclusions

School Education

We’ve been involved in schools classes, with children between the age of 7 and 11 years old in elementary schools.

The main goals of these interventions were the discovery of biology and research at school with two workshops: Microorganisms and their environment and growth of microorganisms on a Petri dish.

We tried to build a guide for future iGEMers to be inspired by our pedagogical project:

Our motivation was to share our passion and knowledge about biology and to raise curiosity of the pupils about microorganisms. We were also very interested in seeing what representation children have on microorganisms, helping them improving their knowledge about microorganisms and discussing about benefits and risks of microorganisms on our health.

We worked with Mrs. Matricon, Mrs Bach and Mrs. Durand, respectively teachers at “Lakanal” and “Patte d’Oie” schools in Toulouse.

Rising curiosity

The introduction step was led by the teacher one week before the intervention. It was dedicated to give a meaning to further teaching, to motivate the pupils, to rise their curiosity, to induce their amazement and their desire to know.

4 types of introduction are possible (see the diagram).

The observation and the technical challenges were adapted to our pedagogical project. For instance, here are some scenarii to introduce microorganisms: why is it important to wash hands before eating? Why are we sick? How can we observe microorganisms?

Emergence of questionnements

The goal is to set up a transition between amazement and reflection in order to involve the pupils in an investigation and research procedure. A bunch of questions results from this step, so the teacher will organise, regroup and sometimes refute them to enable the emergence of a problem or a situation. The main questions were:

A first representation of micro-organisms

The representations are the ideal way to figure out the knowledge of the pupils thanks to their experience of the real world, their social and affective life. Those representations provide the first answer given by the pupils to investigation questions.

A representation is also a structure that contributes to integrate new learning. Those structures had to be transformed so that the pupils better appropriate/benefit from the world. According to Piaget those transformations are called “accommodation” (Depover, Christian et al.: Les modèles d'enseignement et d'apprentissage).

We analysed the representations to figure out how to overcome the possible difficulties and obstacles that could occur during the session.

This work is based on the work of three classes of two schools of CE2, CM1 and CM2 (equivalent to 3th to 5th US grade) for a total amount of 72 pupils. The pupils had to draw a microbe and answer 3 questions: Where can we find microbes? What do they do? How to see them?

Visual representations

We found two main conceptions of microorganisms:

  • A representation that assimilates the microorganism to an animal.
  • A representation built from the pictures watched by the children (Barbapapa, kawaï, pokemons, cartoons, etc.) which have in common a circular or geometrical form with eyes and mouth.

It is interesting to see that some of those representations are close to microorganisms. However, a lot of pupils represent microorganisms with legs and sometimes eyes. Some pupils also drew a speech bubble to indicate that microbes are talking or thinking.

Where can we find microbes?
What is their purpose?

Conclusions about representations

Zoomorphism is an obstacle to their understanding. It was thus important to clarify the morphological differences between microorganisms and animals (including insects) and their relative size (the lice are not microbes).

The concept of hygiene to protect oneself against microorganisms is well known by the pupils. Nevertheless it was necessary to insist on the presence of microorganisms regardless of hygiene, on their roles in the body (digestion, protection), on their essential action on the environment (degradation of organic substances)  and their intervention in the production of bread, wine and dairy products (yoghurts, cheese,…).

It was important to give a precise order of magnitude concerning the microorganisms and the growing magnificence to set up on a microscope in order to observe the microorganisms. There was a need to present the Petri dishes we prepared for the session and also their use to observe the microorganisms in the environment of the pupils.

Those representations were compared to the representations built at the end of the pedagogical sequence.

Learning by doing

We expanded from the representation work and from the pupils questioning to select a statement: Where microorganisms can be found? How can we do to show their presence? We provided to the pupils a “Little laboratory report” as a workbook for investigation and to keep a written record. It also introduced them the daily life of scientists with the need to write everything down.

We started by highlighting an important point: commonly, people talk about microorganisms using the word “microbes”, which is quite vernacular; it gives a negative and restrictive image of microorganisms. As we were in science class, we needed to use the word “micro-organisms” instead of the word “microbes”.

Click on one of the workshops to know more about it!

Workshop 1: Microorganisms and their environment

Before launching the experiment, it seemed necessary to us to do a documentation workshop. The goal was to provide elements for the representation of microorganisms: the size (working with maths concept like the scale and the enlargement factor), their visual aspects and their environment.

Questions to answer:

  • How to see them?
  • Where can we find them?

Skills:

  • Observation (do an observation drawing)
  • Recognize a microorganism and associate it to its environment

First, we introduced the micro-scale and zoom principle using mathematics, pictures and common objects like rulers and reams of paper.

Then, we presented some pictures of microorganisms annotated with their name and pictures of environments where microorganisms can live in (cheese, rivers, mud, yoghurt). The goal was to associate each microorganism with its corresponding environment. The pupils were very surprised to discover such a diversity and that microorganisms could be found in food or were useful to produce bread.

Finally, all pupils selected a microorganism and drew an observation drawing in the “lab report” according to the guidelines we gave them.

A black box containing bioluminescent Vibrio harveyi: show an impressive capacity of living organisms

Questions to answer:

  • How to see them?
  • Where can we find them?

Skills:

  • Create and follow a scientific protocol

During the session, both empty and contaminated Petri dishes with yoghurt, fingers, leaves and river water were observed. The pupils drew an observation drawing of the boxes and also described what they saw in the box: the size, color and aspect of the microorganisms present on the Petri dish.

We explained the difference between the pictures of a single microorganism cell and one of the visible stain (called a colony) on a Petri dishes. This notion was quite difficult for the pupils. We used the analogy of a town (the colony) seen from the space, and only one human, invisible from the space. They measured the diameter of a stain to have an approximation of how many individual microorganisms can compose one colony.

Afterwards the pupils imagined experiments to collect microorganisms. They were eager to contaminate their own dishes as planned, so we let them do that with whatever they wanted: unwashed and washed hands, nose, chocolate,... following these guidelines : not opening the Petri dish after the contamination and annotate it with the date and the name of the experimenter. The notion of negative control was also explained by using a Petri dish without microorganism.

When comparing freshly inoculated Petri dishes and others with clearly visible stains, the pupils understood that it takes time for microorganisms to grow. With the pupils participation, a protocol to measure the growth of the microorganism was set up. They had to take pictures or realize drawn observations in the lab book to describe the microorganisms growth.

For safety reasons, the Petri dishes were sealed with parafilm and an observation post was installed with the pupils. Two weeks later, the teacher gave us back the Petri dishes in order to eliminate the microorganisms properly with our autoclave.

Experimental results through weeks

Due to the french legislation about external intervention in classroom, we were not allowed to come back in the class once more. Both the analysis and the validation were performed in autonomy at school with the support of the teacher.

Two weeks after the intervention, the pupils send to us a report of their experiments. The results were satisfying as every plate contained microorganisms colonies except the negative control.

A new representation of microbial diversity

The consolidation was done by the teacher during the two weeks growing time. We were also involved during this time: because the pupils send us some new questions: for example, they wanted to know how we destroy Petri dishes, and why there was different colours on their dishes. We transmitted our answers to the teacher.

After the consolidation, the pupils did the same work as during the first session: they drew their representation of microorganisms and wrote a feedback (“what I have remembered”) about the pedagogical project.

How did the knowledge of the students evolve after the pedagogical sequence?

The analysis of the pupils work 2 weeks after our intervention revealed a clear evolution of the representation and knowledge of the pupils. Those progress can be sorted as 3 levels.

Level 1

The representation drawing present empty elliptic forms as the E. coli colony observed during the session. The pupils use very often the term microorganism instead of microbe. Here are some characteristics they remembered:

  • “The microorganism can only be observed with a microscope as they cannot be seen with the naked eye.”
  • “Some are good for the body and others are nasty.”
  • “People try to put as few microorganisms as possible in sweets or in cans.”

This level attests a first evolution from the zoomorphic conception of microorganism. Indeed, we can not see any mouth, teeth, eye or insects in the pupils representations. Nevertheless, the attributes “good” and “nasty” show that this evolution has to be consolidated.

Level 2

Besides smooth elliptical shapes the drawings contained flagellum. The characteristics of the level 1 are present but the distinction between pathogen and non pathogen is clearly explicit. (pathogen : dangerous for the body). The pupils precised that microorganisms have to grown on Petri dishes to be observed. The zoomorphic completely disappears at this level.

Level 3

The drawings include elements of the cytoplasm (DNA, proteins) without being explicitly named. In addition of the characteristics of level 1 and 2, the pupils evoke the antiseptic power of some products: bleach and 90% ethanol solution. Those substances do not contain microorganism as they are able to kill them. The term "microbes" is definite as “member of the microorganisms family”. The restored elements show that those pupils have junior high school level of knowledge about microorganisms.

Conclusion

A strong evolution in the representation of all pupils has been observed. Thus our action has had a positive impact on all pupils regardless of their prior knowledge about the subject. We have manifestly contributed to the construction of a non zoomorphic representation of microorganisms and to the discovery of a new world that was widely unknown. Their curiosity and their enthusiasm truly impressed us! As iGEMers, with those interventions, we understood how the concepts we used daily in our lab were seen by children. We learnt that during a scientific project  or career, we have to stay close to children and education. Indeed, with their representations and their questionnements, we were able to stand back from our “researcher” point of vue and consider our scientific field differently.

  • Card game conception
  • Learning through play
  • Educational game design
  • Discussion

Card game

Conduct several interventions in schools cause is in our opinion clearly a nice way for pupils to ‘learn by doing’. During this period, we thought is was also a good idea to bring scientific knowledge outside of the classroom. That is why we came up with the idea of creating a strategy card game focused on biology. With this game, we are hoping to draw attention to the hidden world of microorganisms and make it visible elsewhere than on the bench of a scientist or inside a biology student’s notebook. We really wanted to integrate our game in an educational approach and considered it as a nice way to talk about our field of study. Many games already exist on the subject (Strain, Gusty, Bacteria Combat, Healing Blade, …) but they are mainly about antibiotics resistance whereas we wanted to bring something new by presenting some genetic aspects in biotechnology.  

The card game was indeed designed to get people to understand biodiversity, microbiology and genetics by a playful approach. It is meant to be accessible to a large audience. We created this card game in collaboration with game design students to get an attractive product we can share with as many people as possible. They also gave us a unique point of view by being both insiders of the game conception and having no advanced education in science. We thus tested it gradually with the help of scientists and general public to improve the gameplay so that it can be both fun and scientifically accurate.

We are aware that our game can raise interrogations about horizontal gene transfer and genetic engineering of living organisms, as the player acts as a bacteria colony attacking others and can grow in strength by acquiring plasmids. The main goal of our card game is to provide basic knowledge and vocabulary about biology to a young or a general audience so that they can later construct their own opinion. We therefore hope in engaging a discussion about science in society, and unleash the player’s curiosity about microbiology.

Learning through play

With the increasing use of serious games in education and corporations, it may seem obvious today that learning through games is a much more efficient and pleasing way to reach out to children or people in general. This concept seems to assume that children or even adults don’t usually enjoy learning the traditional way, but it is actually a wrong statement. Everyone do indeed love learning when it is relevant and when they can find their own motivations in it. As the main motivation for playing a game is also entertainment and is caused by curiosity, it is a perfect way to start an enjoyable learning process.

“Game-playing is a vital educational function for any creature capable of learning”
(Crawford,  The Art of Computer Game Design, 1982)

According to Malone and Lepper1, there are 7 factors to provoke personal and interpersonal motivation. The rules and design of ‘Microbioworld’ were created around these 7 factors:

  • Challenge

    The goal is clear: to get to 10 log of bacteria or be the last living colony; it allows the player to elaborate a strategy. Moreover, random shuffling of the cards makes it complex enough to be enjoyable.

  • Curiosity

    The graphic designs of the cards make the game visual and attractive at first sight, and the educational booklet that explains the link between the game and the scientific reality gives the player desire to know more about what they just saw in the game. The gameplay is also arousing curiosity due to the variability of the cards and the possible combos which are making every game and strategy different.

  • Control

    By choosing an action at the beginning of every turn, the player has a power on the outcome of the game.

  • Fantasy

    The game illustrates a setup situation in which selected bacteria grow and develop in Petri dishes. The context of the game can be seen as a simplified model of the world where its elements and the interactions between them are used as pedagogical tools.

  • Competition

    By attacking or dividing, players are in competition with each other and social interaction is making the game dynamic.

  • Cooperation

    Some situations in the game (contaminant fungus, morphotype, symbiose... ) also make people create alliance and strategies together against common enemies.

  • Recognition

    The possibility of winning the game can provide an exciting goal to reach and is a personal accomplishment that players want to achieve even if it is only an end in itself and has no further use.

Educational game design: a balance between the learning content and game content

According to Bjørner and Hansen2, the most important thing to keep in mind when creating an educational game is to find the most suitable compromise between the quality and amount of learning content, and the potential of fun of the game content. That’s why we always have to think about these questions:

  • Is the card game scientifically accurate and interesting?
  • Are the rules and mechanisms clear enough for the game to be playable?
  • Is the game comprehensive, fun and challenging enough to give a motivation for playing?
  • Is the card game in accordance with ethical criteria?

They also explain that a lot of educational games fail to inform or entertain players because they are not engaging enough and also because there is no clear link between the gameplay and what the designers want to teach.

To prevent that, we used an iterative approach to design ‘Microbioworld’ which help us to answer to the previous main questions about the game. We realised that even if the player was the main actor of the design process, it was not possible to create a game without implicating different stakeholders.

Simultaneously, we asked researchers, teachers and scientists to validate the learning content, and game designers to validate the game content. Because it has to do with modifying bacteria so they can gain powers, we also requested the help of ethics experts. We also tested the game with the public that leads us to simplify the rules. Therefore, we’ve made around 10 different versions of the card game before to get the last one, Microbioworld. We used to test our different versions with our instructors and families to improve the gameplay: here you can see the team playing at the version Δ7bis after the weekly meeting:

As we want to improve our game to be perfectly balanced in the gameplay, we made a survey to take into account different comments of people who played to it. (you can see it on this page!)

We organised a Microbioworld tournament with students of the M2 "Molecular Microbiology" of the Université Paul Sabatier. We made them fill our survey : in general, people really liked the concept of the game. They was happy to find they favorit bacteria with special capacities in a game, and they found the illustrations funny (especially the chiadé plasmid). Students particularly appreciated the rigor of scientific notions mentioned in the game, but we noted that no one has the idea to consult the explicative booklet on our wiki to go further.

We also created an explicative booklet (click here to see it!) that gives more information about the game rules and mechanisms, and also explains the science underneath each card effect. As the vocabulary used in the game is specific to the biology field, it was important to define and explain the concepts that are behind it for people who would like to go further. However, it is not necessary for the players to read the whole explanations to understand how to play the game. Thus, it engages the player to demonstrate autonomy in his learning process instead of teaching him a lecture without engaging any responsibility or action on his behalf. According to the discovery learning theory, people are more likely to remember concepts and knowledge when they discover it on their own.

Create a group discussion and discard people misconceptions

The main goal of our card game was in the first place to give some basic knowledge about microbiology and synthetic biology to people who are not familiar with it, but we realized there was a risk to trigger a sensible debate about genetically engineered microorganisms. The plasmids of the game are indeed generally giving a characteristic that could be considered as a superpower used to attack other living organisms. As we wanted the game to be as much scientifically accurate as possible, this game mechanic could make people think that biologists can easily integrate dangerous genes into bacteria or create biological weapons. On the other hand, we thought creating a discussion around it could be interesting.

With the latest advances in the biotechnologies field and the media coverage they get, the general public today is already implicitly involved in the way of the technology is moving forward. That is why we thought the card game would also be a nice basis to initiate a discussion. We did not want to give any of our opinions about the subjects we brought into the game and we only described facts about biological phenomena, microorganisms and their characteristics. We have adopted an objective position to share some knowledge to those who play ‘Microbioworld’, without taking a side: we wanted them to build their own moral reflection about the risks and opportunities in modern biology.

We also took care not to present only pathogen bacteria, because it would not have reflected the natural microbiological balance and we didn’t want people to think only “mean” microorganisms exist. Furthermore, we know that our game is basically about a war between microorganisms because the “offensive powers” (plasmids) that players are using to win introduce the concept of conflict in the game. However, we wanted it to be clear that it is only a pretext to make the game fun and interactive. Indeed, war games often depict a real life simulation where the moral choices of “attacking” or “fighting” somebody or something is not made by the player but guided by the game designer. To us, there was still a need of placing the player in the center of the reflection. That is why we clarified in the game booklet what is the part of reality and what in the mechanisms was included for fun purpose only. We don’t want players of ‘Microbioworld’ to think that researchers also have fun creating super powerful bacteria to kill everyone! Which is by the way scientifically impossible.

Moreover, one of the risk of creating graphical designs of biological phenomena to attract curiosity was to create misconceptions about what these phenomena really are. For example, after interpretation of the children representations made during our interventions in schools, we concluded that children of these ages often considered microorganisms as little animal or insects. For fun purpose, the game graphic designers decided to draw bacteria with faces to personify it and we kept it that way, but there was a need to specify in the game booklet some adjustments and define precisely where the boundary between reality and artistic freedom is. We also decided to make the game accessible to children from age 10 because we thought it could be hard for primary schools children to distinguish clearly this boundary, mostly because they don’t have the necessary knowledge and critical thinking to understand that yet.

References

  1. Malone, T. & Lepper (1987). Making Learning Fun: A Taxonomy of Intrinsic Motivations for Learning. In Snow, R. & Farr, M. J. (Ed), Aptitude, Learning, and Instruction Volume 3: Conative and Affective Process Analyses. Hillsdale, NJ
  2. Bjørner, T., & Hansen, C. B. S. (2010). Designing an Educational Game: Design Principles from a Holistic Perspective. International Journal of Learning, 17(10), 279-290.
  • European Researcher's night
  • Context: GMOs in France
  • GMO quiz game
  • Workshops in a circuit

Researcher's night

The European Researcher’s Night is a major scientific event that gather researchers and general public in a convivial atmosphere. This is the opportunity for laboratories to communicate on their work in a creative way, and to share scientific and ethical values with the public. We especially want to thank the LISBP, our host laboratory for our iGEM experiments, that helped us for the workshop design and animation of the event. In 2017, the topic of the event was “(Im)possible?”.

Our motivations for being involved in this event were to face an adult public and change their prejudices on GMOs. We wanted people to discover our field, synthetic biology, by making them questioning themselves on GMOs through 3 approaches: biodiversity, application and legislation.

Context: how to deal with GMOs in France?

During several meetings with the french public and from our experience as biologists, we have observed that in France, most of people are afraid of GMOs and ignore why it has been created in the first place. They usually can’t tell exactly what can be done in the field of medicine, environment or even nutrition, and more important, we have noted that people use to think scientists can do anything they want in their labs with GMOs manipulation. Indeed, french press is not kind with biotechnologies. For example, we have encountered a journalist from “France Inter”, a famous radio in France, to talk about our iGEM project and he asked us not to say the word “GMO” during the interview because he didn’t want to create a polemic… It was really frustrating for us to imagine our project had to be censored before being heard by the public. We believe that we need to establish a dialogue between scientists and general public to remove prejudices.

Thus, we had to face this challenge: how to make people question themselves on synthetic biology and legislation?

Design of our game “Possible or Impossible”

Andragogy methods

As we want to encounter an adult public to establish a discussion, we needed to study teaching methods for them to be open to a dialogue: those methods are parts of the andragogy studies. We found several publications studying andragogy and we tried to highlight the main points of it for future iGEMers to get inspired on our investigation.

First, the adult learner is self-directed and has a need to be perceived by others as self-directing. When adult learners find themselves in situations in which they are not allowed to be self-directing, their reactions are “bound to be tainted with resentment and resistance”.

Second, the adult learner has accumulated life experiences that represent an essential resource for learning. When an adult learner’s experience is ignored or devalued, s/he feels rejected as a person. That is so because “to an adult learner, his experience is who he is”.

Finally, adult learners have a problem-centered approach to learning rather than a subject-centered approach. The social work adult learner wants “to apply tomorrow what he learns today, so his time perspective is one of immediacy of application” (A. Gitterman : “Interactive Andragogy: Principles, Methods, and Skills”, 2004).

Game principle

This investigation got us involved in creating a quiz game about biotechnologies, in the form of a card game. To be close of the European Researchers Night theme, “(Im)Possible?”, we’ve called this game “Possible or Impossible”: its goal is to guess if the affirmation on the top of the card is rather “Possible” or “Impossible” with an instinctive answer. We have classed our 35 cards into 3 topics: biodiversity, application and legislation (see examples below).

This game has been made for people to be autonomous: they can play without our help and they are not afraid to be wrong (which refers to the most important point of the andragony studies: the adult is a self-directed learner). Because it raises interrogations, this game has been a good approach to open a dialog with adults. We observed that people used to start the discussion explaining their own experience or thoughts on the topics that awoke their curiosity: we managed to start the discussion by developing learner’s experience, the second main point to be respected in an andragogy approach.

Those questions aim to introduce several biodiversity particularities.
These cards aim to demystify the french legislation on GMOs to people. Their goal is to break the prejudices of the public on the use of genetically modified microorganisms in french labs.
These questions highlight several examples of GMOs applications on different fields (health, environment, industry…)

Our workshop: a synthetic biology learning circuit

In order to follow the year’s thematic “(Im)Possible”, we chose to focus our workshop on the incredible features of biodiversity, how to use it in synthetic biology, and what are legal limits on GMO use in France. To do this, we’ve designed a circuit of workshops for people to follow a logical discovery path: raising curiosity first, then make people question themselves on synthetic biology capabilities and limits, thus make them practice scientific experiments, in order to finally open a debate to go further.

Click on one of the workshops to know more about it!

Introduction on microbial diversity with our card game MicrobioWorld

We designed this game in order to introduce the fascinating world of microorganisms. Some basics about microbiology are illustrated in this game like natural antibiotics resistance, horizontal DNA transfer by conjugation and transduction, plasmid incompatibility, culture media selection or even bacterial characteristics (gram, morphotype…). Although some notions seem complicated for the general public, the gameplay has been adapted to be understood by everyone.

You can click on this page's Microbioworld section to know more about how we design it, or take a look at the game's rules in the game booklet.

A black box containing bioluminescent Vibrio harveyi: show an impressive capacity of living organisms

Observation of a every day life using microorganism: Saccharomyces cerevisiae

...for people to have a concrete idea on what is a microorganism, and make them realize that they are used in the everyday life.

Question yourself on GMO capabilities and legal limits with our quizz “Possible or Impossible”

Basics about DNA with a practical approach

The particularity of this workshop is that it can be repeated at home with tools of everyday life. It is made to introduce what is DNA with a practical approach rather than with theoretical lessons.

The example of a gene function with an enzymatic dosage of β-galactosidase

  • Conference
  • Programme
  • Living machine?

Conference

In order to bring scientists, students and teachers together around synthetic biology, we organised a conference at Université Paul Sabatier which is the science campus of the Toulouse university. Our motivation was to open up the debate on ethics in synthetic biology with a concerned public through the intervention of specialists from the ethics, biotechnologies and synthetic biology fields. It was also a good opportunity to introduce iGEM in Toulouse and to gather former iGEMers of the Toulouse team.

Program of the conference

Kaymeuang Cam: Introduction on synthetic biology

Kaymeuang Cam: Researcher at IPBS, Professor of genetic microbiology at Université Paul Sabatier and PI of iGEM Toulouse last years

Mr Cam made a presentation to introduce synthetic biology, making comparison between electronic engineering and the use of biobricks. He summarized the key milestones that made the history of this particular field in science.

Gilles Truan: iGEM and openscience

Gilles Truan: Lab director at LISBP and former PI of iGEM team Toulouse

Mr Truan explained to the audience the principle of iGEM competition and the particularity of the registry, a perfect example of open science. The goal of his intervention was to make people realise that there is other ways to publish experimental results in science and that there are alternatives to patents.

Bettina Couderc : Biotechnologies and health

Bettina Couderc: Researcher at CRCT and Professor of Biotechnology at Université Paul Sabatier

Mrs Couderc illustrated several aspects of biotechnologies: genome editing, cell therapy and genetic therapy. Her intervention had for main goal to show what are the last breakthroughs in health research, and what are its perspectives in our society; she introduced ethical reflexions on the use of genetic engineering for health.

Vincent Grégoire-Delory: Synthetic biology and ethics

Vincent Grégoire-Delory: director of “Ecole supérieure d’éthique des sciences” (superior school of science ethics) and Professor at “Institut Catholique de Toulouse” (catholic institute)

Mr Grégoire Delory made an introduction on ethics in synthetic biology, a field in which people are used to consider living things are like machines. We came back to the definition of life: what is a living organism ? He tried to make people questions theirselves on the frontier between natural and artificial things. (see the paragraph 2. below for more informations on ethics in synthetic biology!). We were really pleased to see that those presentations raised a public debate on twitter (see the paragraph 3. below!).

Sarah Guizou: E. calculus project

Sarah Guizou: Former iGEMer of the first iGEM Toulouse team in 2013

Sarah came back in Toulouse to talk about her experience of iGEM. Her project, E. calculus is at the frontier of biology and mathematics. (see more on their wiki). It was really interesting to talk about mathematics in synthetic biology after the intervention of Vincent Grégoire-Delory.

Benoit Pons and Marine Pons: Api Coli project

Benoit Pons and Marine Pons: former iGEMers of the iGEM Toulouse team in 2015

Marine and Benoit presented us their project Api Coli, a synthetic biology regulation project to fight against the varroa, a bees parasite. (see more on their wiki)

Camille Roux and Manon Barthe: Paleotilis project

Camille Roux and Manon Barthe: Members of the iGEM Toulouse team last year

Camille and Manon presented the same prezi they made last year for the Giant Jamboree and explained their project Paleotilis to the audience. They engineered B. subtilis to kill fungus that destroy the rock painting of the Lascaux cave in France. (see more on their wiki)

iGEM Toulouse 2017: Croc’n Cholera project

Exactly one month before Boston, this conference was also the opportunity to test our presentation and our ability to answer questions of a scientific public. We were glad to present our work to formers iGEMers of our team, to the guests, to some of our teachers who came for the occasion and to all the students who came at the conference.

Convivial buffet for further discussions

After the conference, everybody was invited to a buffet to exchange and continue discussions in a friendly ambiance. We had a good time with formers iGEMers, who exchange with us about their experience of iGEM and gave us some secret fun facts about our iGEM instructors… We noted that people were feeling comfortable to talk about ethics after several glasses of Gaillac, an excellent white wine from the region of Toulouse!

Awareness on the “living-machine”: Can we consider the living as a technical object?

Here is a short summary we made on several ethical questionings highlighted by Vincent Gregoire-Delory after the conference for people that consult our web site to get access on it!

Living organisms are not technical objects: they can form themselves from different parts whereas those of the second one are just put together by a designer. However, transplants, organ donation or genetic complementations show us that we can replace defective parts of a living organism just like a machine… In these conditions, can we consider the living as a technical object?

The point is to know if this comparison has a meaning by questioning ourselves on the relation between art, technique and nature to establish a frontier separating natural and artificial things. Farming and genetics has made some living beings (that already existed independently from human) products of industry and technology. Fruits that we’re consuming, farmed animals, our own body modified by our alimentation, or even the different postures imposed by the use of machines are all artificials things created by our civilisation that made our lives far from the natural processes. Science has moved the frontier between natural and artificial. Do we have to keep this frontier between living and technical tools? Do we have to consider living beings, that are conscious and have feelings like technical tools? Must we criticize this comparison by putting ethics before technics and biology?

These are all the questions that we must ask ourselves as scientists, and more so as synthetic biologists, when we are working in our labs! Here begins ethical questionings and awareness.

High school lab

We’ve prepared an intervention for High School senior students in scientific classes (between 17 and 18 years old). Our involvement was focused on 3 main goals: implementing a learner-centered pedagogical approach in a high school class, helping pupils know more about biotechnologies through a practical approach, and discussing on “how to be part of science, and which studies to choose after high school?”.

Our motivation was to share our experience of the “after high school world” with young students, explaining them our choices and motivations for studying science, and in particular synthetic biology. We’ve designed a special practical work for students to figure out what is the scientific method, and what is the everyday work in a biology laboratory.

Context: The French educational system applied to teach science and its challenges

In our French education system, students are selected over short periods (final year in high school and preparatory school), and high school studies mainly focus on theoretical teaching. Preparatory classes and school entrance exams have endowed the scientific disciplines with a selective role. Students must focus their learning on standard exercises that must be reproduced within a given time in order to pass extremely formal examinations (the French Baccalauréat and graduate school entrance exams). Educational studies have demonstrated that the best students have acquired solid "scientific background" but often lack "scientific know-how". For the majority of them, knowledge is acquired through repetition, not by any investigative aspiration for autonomy. In fact, science does not always function by repetition or transmission. The development of experimental techniques and new knowledge always go hand in hand. It is seemingly impossible to separate the results of speculation, culture or knowledge from what is due to pragmatism, endeavour, or skills. Knowledge and know-how are inseparable in any innovative scientific and technical process. The aim is more to merge these skills within the teaching of science. If science is taught from this perspective, it becomes a particularly efficient tool for developing skills in innovation, autonomy, self-learning and creativity (1). In the view of the current situation, we have chosen to do a practical work based both on a "learning-by-doing method" and on a scientific approach for students to discover a new field of science: biotechnologies.

Report on the intervention

What are biotechnologies, and how to be part of it?

The intervention was divided into 2 parts. First, we made a short presentation (20 minutes) about different fields of biotechnologies, and we chose some prominent examples for each field. The goal of this presentation was to help pupils know more about an unknown field for students that are questioning themselves on their future careers and studies. We made a short introduction about iGEM, and we explained the different studies of the members of the team. We thought that was very important to explain the role of each member in the team because it highlights how a scientific team works and what skills are appreciated in such a team. We hope this approach of the scientific studies made students think about what they really want to do after high school, how to do it, and what could be their role if they chose to work in biotechnologies.

Bacterial transformation: an introduction to molecular biology and microbiology

Because we wanted students to understand what kinds of experiments are made in biotechnology laboratories, we’ve prepared a bacterial transformation experiment. In a first time, we explained to students what they had in their eppendorf tubes: one containing DNA, and one containing the bacteria E. coli. Then, we started the experiment by mixing gently 10 µL of DNA into the bacteria tube. We noted that students were troubled by manipulating an unknown DNA, which was really a good reaction!

In a second time, during the "chill on ice" step, we made students question themselves on that question: do you think that DNA is able to enter inside bacteria? We were pleased to hear from students that the membrane will prevent the entry of DNA inside the bacteria. It was the occasion to explain to students the particularity of the bacterial cell wall, and cell wall permeabilization in competent bacteria. We described to them the plasmid map, and made the focus on 3 sequences: the ORI sequence, to approach the notions of DNA replication and bacterial division; the chloramphenicol-resistance sequence, to explain to students why laboratories need to use antibiotic-resistant strains; and the gene encoding the enzyme β-galactosidase, to remind them mechanisms of transcription and translation they had already learnt in class, and to go further, doing an introduction on molecular biology.

After that, we made the heat shock, and put bacteria at 37°C. We made students question themselves on why we needed to incubate our transformed bacteria before plating them on petri dishes, and they answered that bacteria must repair their membrane and cell wall during this time. We explained them that bacteria needed to express the chloramphenicol resistance gene. After making them think on a scientific approach (see 3. c. below), they plated they transformed bacteria on petri dishes.

From a gene to a function: introduction on biochemistry

Teachers informed us that students had a course the week before about enzymatic reactions. We took the example of the natural reaction catalysed by the β-galactosidase, that hydrolyzes lactose to galactose and glucose to remind them the course they had before. Then, we described the x-gal as a substrate analogue to lactose in this reaction, and explained how the product of reaction becomes blue after a change in structure. We made an in-vitro demonstration of the color shift when adding β-galactosidase in a x-gal solution. We made a transformation of E. coli with a plasmid containing the β-galactosidase gene, we made students question themselves on the in-vivo enzyme activity, and made them think of a scientific approach to demonstrate the β-galactosidase activity in their transformed bacteria (see 3. c. below).

Feedback

Students' feedback

In order for us to question our work, we gave them a little survey to fill in at the end of the intervention. The main goal of this survey was to know if we had succeeded in our pedagogical approach:

Conclusion: according to their answers, we can say that they liked our intervention and found it interesting, in particular experiments. Although some students found the notions difficult, the majority of them were glad to go further than the school program. Even though there are some improvements to do to be better understood by scientific beginners, we can say that our pedagogical approach was a success because students learnt something new.

Teachers' feedback

" This intervention has allowed the students to identify themselves to iGEMers, who were high schoolers like them a few years ago and gained experience in the field of science. The feedback of our students is really positive. The practical work was perfectly executed: a good management of the time with an alternance between protocol steps, where students had to make the experiment by themselves, and scientific explanations on different fields of knowledge (microbiology, biochemistry…). There were also interactions and questionings with our students. High school teachers highlights the importance of the pedagogical methods used in this intervention. We particularly appreciated the anticipation efforts that the iGEM students make to come several times to the high school: they wanted to insure the disponibility and the compatibility of the material for the validation of their protocol (that had to respect the safety rules of our institution). They gave us the protocol soon enough so we were able to insure the feasibility of their intervention for our student’s level in biology. All of our students came back 2 days after the intervention of iGEMers to take pictures of their beautiful petri dishes! We were happy to be introduced to the project of iGEM Toulouse team on cholera, and encouraged them for the competition in Boston! " Muriel GRANDJEAN, biology teacher at Lycée P.P. Riquet of Saint Orens

Methods: How to transmit a scientific message to scientific beginners?

Getting inspired by the “Learner-centered model”

For our educational approach, we’ve been inspired by the "learned-centered pedagogic model", which emphasizes on the student’s interest and motivation. This model highlights the lack of natural learning process in our traditional education system, in which the student’s motivation is mostly based on rewards and punishment in a competitive environment. Natural learning is the way humans learn since birth. It’s a self-motivated and self-directed learning (2).

So our first need was to determine what the motivations of high school senior students classes are. As we discussed earlier, French high school students are focused on two existential questions "What do I want to do after the secondary school?" and "How to get there?". That’s why we chose to share our experience of scientific studies, and open a dialogue between two generations of scientists. We focused our opening speech on the discovery of biotechnologies, and how to be part of it after high school, showing the difference between research and engineering in this field in term of skills. We chose to describe what iGEMers of our team have been studied to illustrate complementarity in a scientific team.

Consulting their school program

To be understood by the young students, we needed to adapt the content of our intervention to their knowledge. For this, their school program was our reference for the conception of the practical work, and to rework on the presentation. We worked with Muriel Grandjean, a high school biology teacher, for the conception of the entire intervention and thanks to her advice we noted that there must be a balance between what students already know, and what you want them to learn during the work. So we based our demonstration on their knowledge, making sure they would not be lost with too much new information. It is essential that learners feel confident with the opening notions of your presentation to establish a dialogue between the learner and the instructor (3).

For the conception of our practical work, the most difficult aspect for us was to adapt our scientific vocabulary. In fact, when we want to teach science, there are specific terms that can’t be simplified, because of scientific rigor. We chose to highlight some important keywords for students to learn the scientific vocabulary. (see our slide presentation for the practical work before)

Making them question themselves through a scientific approach

The scientific method is one of the main objectives of the high school scientific program. It is the foundation of scientific reasoning, giving a specific and predefined plan to follow in the case of a scientific issue/problem/investigation (4) :

During our intervention, we first explained them new notions about molecular biology and microbiology. Then, we proposed a scientific problem in the view of the previous explanations: is the β-galactosidase activity functional in-vivo after the transformation experiment?

Faced with a problem-situation, hypotheses have to be made and new reasoning has to be induced. The inductive phase is very important for creativity. a large place is often given over to the pleasure of doing science. We let students think in small groups to determine their hypotheses, and we noted 2 main hypotheses: some groups expected that β-galactosidase activity would not be functional into bacteria (hypothesis 1), and some other groups expected that β-galactosidase would (be functional) (hypothesis 2).

To verify their hypotheses, students assuming the hypothesis 1, and students assuming the hypothesis 2 had to design an experiment to verify their hypothesis, and to predict hypothetic results, and controls. We’ve noted 2 experimental strategies:

1 - Make 2 liquid cultures with x-gal, one containing our transformed bacteria, and one negative control with wt bacteria. Then make a dosage of galactose, the reaction product: if the galactose concentration is higher in transformed bacteria, it means that the enzyme is functional in-vivo.

2 - Make 2 petri dishes: one with x-gal, and one without x-gal. Plate our transformed bacteria on those petri dishes and incubate 24h; if there are blue colonies on the x-gal petri dish and white colonies on the other, it means that the enzyme is functional in-vivo.

For material reasons, we made them conduct the second one, and we added one negative control: the plate of wt bacteria on x-gal petri dishes. Two days after, their teachers showed them the results to make this conclusion: the β-galactosidase activity is functional in-vivo after the transformation experiment. The hypothesis has been confirmed. This deductive phase is very important for objectivity and responsibility. It sometimes appears laborious but it is a prerequisite for scientific rigour.

Special Thanks

We especially want to thank the “Lycée Pierre Paul Riquet” of Saint Orens (a city next to Toulouse) that allowed us to carry out this work, and particularly Mme Grandjean, a teacher of Biology in this high school, who helped us for the design of our intervention, and the adjustment of our vocabulary for scientific beginners.

References

  1. L. Bot & al:” ‘Learning by doing’: a teaching method for active learning in scientific graduate education “ August 2004
  2. J. Scott Armstrong:” Natural Learning in Higher Education” 1-1-2011
  3. H. Lenoir : “Bases théoriques et Méthodologiques” p.31 to 48
  4. M. Develay: “Sur la méthode expérimentale”

Exposciences

We took part to “Exposcience” which is a scientific festival that took place on the 30th and 31th of May in Toulouse. This festival highlights youths projects by enabling them to present what they have done in relation with science, techniques and environnement. It’s an occasion to share, to talk about and to encourage scientific initiatives.

We realised that if we want to have an impact on society we should impact children, representing the future of our society. Our motivation to be involved in this event as a mixed team, was to show kids that gender equality is possible in science. We also thought it would be interesting to make them discover the world of science and microorganisms, that often suffers from misconceptions or prejudices. Talking about them with young children, parents and teachers can be a good way to raise awareness for their utility and perspective of use. For the conception of our workshops, we wanted to make children participate and interact with us, so that they’ll remember the most of our interventions, and practice a scientific experiment by themselves. In our interactions we tried to incite girls to participate as much as boys so that they gain confidence in themselves and in what they’re capable of.

We chose to make children do a banana DNA extraction thanks to simple ingredients that they can find in their kitchen. The goal of this workshop was to make children understand what is DNA, where can we find it, what is its goal and what is its nature. If you want to do this workshop, you can use our protocol below:

For the most shy children, we made a fortune teller about microorganisms. We observed that they indeed folded it and played with each other, asking questions about microbiology. We realised that it is a good tool for children to get interested in science.

We also discussed with them about microorganisms by the mean of games and for the most interested, we explained our iGEM project Croc’n Cholera: it was a good opportunity for us to do a survey about cholera to measure the level of knowledge of the public on this matter and to raise awareness concerning this disease.

Campus exhibitions

We realised that students of the scientific campus are not aware of iGEM Toulouse projects, and in general of synthetic biology issues. So we organised exhibitions at INSA Toulouse and Université Paul Sabatier library to highlight former iGEM Toulouse project and potential of synthetic biology.

In order to make iGEM project understandable for all scientist student (and not only for biologists), we redesigned posters of previous project E. calculus, SubtiTree, ApiColi, Paleotilis, and of our project Croc’n Cholera. A poster on iGEM and Synthetic Biology was also created as well as an other explaining what cloning is. Indeed, it is a basic technique used in synthetic biology. We also created a timeline with photos illustrating the key moments of our adventure in the iGEM competition this year. A computer was freely accessible to go on our Wiki.

To make this exhibition more interactive, we organized a "Discovery of Biology" workshop at Bib'INSA. For a whole afternoon, we held a booth with different workshops to explain to students what biology is (our Microbioworld card game, our Possible/Impossible quizz, DNA extraction and bioluminescent bacteria: you can go on the "Researcher's night" event to know more about it).

Finally, another workshop was proposed to speak about synthetic biology by showing them pink or blue bacteria. We explained to them the cloning technique for the insertion of a DNA fragment which can for example encode for a colored molecule, then making the bacterium pink or blue.

Press & Media

The 20 minutes is a daily free generalist newspaper aimed at commuters who want quick and concise information, reaching a wide audience. We appeared in the regional section of the online version of it. Thus we were pleased to reach the local inhabitants to mobilize them and make them know about science initiatives in their living area.

Click here to read the full article (in french)

Coté Toulouse is a weekly free paper aiming to deliver all the local information. Once again we were pleased to reach at the local inhabitants of Toulouse to show them what the students of their city are doing and to mobilize them around the project.

Click here to read the full article (in french)

La dépêche du midi is a regional daily newspaper sold in approximately 150,000 copies everyday. Thus it reaches a wide public living in a large area. This publication was an opportunity to make this audience discover our project and to tickle their curiosity to learn more.

Click here to read the full article (in french)

After being interviewed by local and regional newspaper we were thrilled that Le Journal du Dimanche published an article about our project. Indeed it is a weekly national newspaper reaching around 200,000 people. This article obviously gave our team a national exposure, along with synthetic biology and the iGEM competition. We hope that this article tickled the curiosity of many french people.

Click here to read the full article (in french)

Aujourd’hui en France is a national weekly newspaper gathering almost 140,000 readers every day. It emphasis the interesting regional initiatives in France, giving them more exposure. We were thus delighted to be part of these noteworthy projects.

Click here to read the full article (in french)

Our project was also presented in the online version of France info which is a french radio. Some members of the team were interviewed by the journalist and it was a good practice to present our project in a popularized way with our words.

Click here to read & listen the full article (in french)