Team:Lambert GA



Characterizing Non-Lysosomal Inducible Protein Degradation



In the development of genetic circuits, researchers often face issues with the overlap of protein expression. As a result, the 2017 Lambert iGEM team aimed to develop a clean way to “switch” off protein expression by further characterizing a proteolytic mechanism known as ClpXP. An inducible genetic construct was made to express tsPurple (a chromoprotein) and degrade via ClpXP upon induction of varying levels of IPTG, resulting in correlating amounts of protein degradation. Data was collected on the team’s engineered Chrome-Q, a 3-D printed camera-device that supports a constant light source for centrifuged cells; in turn the data was analyzed using Lambert iGEM's self-constructed software app to determine HSL values. The purpose and goal for this technology was to promote scientific research under any financial circumstance to quantify data in standardized conditions. Measuring relative strengths of protein degradation using self-engineered products will allow an economic approach in characterizing non-lysosomal proteolysis.



Who We Are

We are comprised of 14 high school students from Suwanee, Georgia in the 10th, 11th, and 12th grades. We are an after-school/before-school club that meets simply for the love of synthetic biology.






Our Project

As an underfunded lab, our project aimed to reduce costs of lab work. While characterizing non-lysosomal inducible protein degradation, we developed the Chrome-Q to quantify the degradation of protein.








Human Practices

This past year, we have performed a variety of human practices, to educate the public about synthetic biology, as well as our project, through multiple outreach events, including the Maker Faire in Atlanta.