Difference between revisions of "Team:Newcastle/Results"

Line 978: Line 978:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Preliminary Experiment </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Preliminary Experiment </h2>
           <p>In order to support our theory that genetic assembly is the rate limiting step in biosensor development, we attempted to assemble a simple GFP producing system using three engineering techniques: BioBrick, Gibson and Golden Gate. Further information about this experiment can be found on our BLANK page (LINK TO BIOTECHS GENE ASSEMBLY PAGE). Gibson was the only successful technique we trailed (CHECK THIS WITH BIOTECHS), However, Gibson assembly is not an ideal method for circuit variant production due the the specificity of the overlapping regions: For example, to assemble ten genetic parts into all possible orders would require the use of 90 different overlapping sequences (Ellis et al., 2011). Therefore, the ability to generate circuit variants without the need for further genetic engineering would be useful.</p>
+
           <p>In order to support our theory that genetic assembly is the rate limiting step in biosensor development, we attempted to assemble a simple GFP producing system using three engineering techniques: BioBrick, Gibson and Golden Gate. Further information about this experiment can be found on our <a href="https://2017.igem.org/Team:Newcastle/InterLab">interlab page,</a> . Gibson was the only successful technique we trailed (CHECK THIS WITH BIOTECHS), However, Gibson assembly is not an ideal method for circuit variant production due the the specificity of the overlapping regions: For example, to assemble ten genetic parts into all possible orders would require the use of 90 different overlapping sequences (Ellis et al., 2011). Therefore, the ability to generate circuit variants without the need for further genetic engineering would be useful.</p>
 
            
 
            
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>

Revision as of 12:26, 29 October 2017

spacefill

Our Experimental Results

Biochemical Adaptor

Target

Detector Modules

Multicellular Framework Testing

C12 HSL: Connector 1

Processor Modules

Framework in Cell Free Protein Synthesis Systems

C4 HSL: Connector 2

Reporter Modules



Looking for Interlab Study
related results? Click below!