Difference between revisions of "Team:Newcastle/Results"

Line 991: Line 991:
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Preliminary Experiment </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Preliminary Experiment </h2>
  
           <p>In order to support our theory that genetic assembly is the rate limiting step in biosensor development, we attempted to assemble a simple GFP producing system using three engineering techniques: BioBrick, Gibson and Golden Gate. Further information about this experiment can be found on our <a href="https://2017.igem.org/Team:Newcastle/InterLab">interlab page,</a> . Gibson was the only successful technique we trailed, however, Gibson assembly is not an ideal method for circuit variant production due the the specificity of the overlapping regions: For example, to assemble ten genetic parts into all possible orders would require the use of 90 different overlapping sequences (Ellis et al., 2011). Therefore, the ability to generate circuit variants without the need for further genetic engineering would be useful.</p>
+
           <p>In order to support our theory that genetic assembly is the rate limiting step in biosensor development, we attempted to assemble a simple GFP producing system using three engineering techniques: BioBrick, Gibson and Golden Gate. Further information about this experiment can be found on our <a href="https://2017.igem.org/Team:Newcastle/InterLab">interlab page</a> . Gibson was the only successful technique we trailed, however, Gibson assembly is not an ideal method for circuit variant production due the the specificity of the overlapping regions: For example, to assemble ten genetic parts into all possible orders would require the use of 90 different overlapping sequences (Ellis et al., 2011). Therefore, the ability to generate circuit variants without the need for further genetic engineering would be useful.</p>
 
            
 
            
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
Line 1,015: Line 1,015:
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Implementation </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Implementation </h2>
           <p>To prove that our concept of splitting biosensors across multiple cells would work, we designed an IPTG sensor. The design of this system can be found in Figure 4. In this system, LacI is constitutively expressed in the detector cell and represses the production of LasI. When IPTG is added, it binds LacI, preventing repression. Therefore, in the presence of IPTG, LasI will produce C12, our first connector molecule. picture To determine that our system would work, it was first tested in silico. Details on the model of this system can be found on our Modelling pages (LINK TO MODEL PAGE)
+
           <p>To prove that our concept of splitting biosensors across multiple cells would work, we designed an IPTG sensor. The design of this system can be found in Figure 4. In this system, LacI is constitutively expressed in the detector cell and represses the production of LasI. When IPTG is added, it binds LacI, preventing repression. Therefore, in the presence of IPTG, LasI will produce C12, our first connector molecule. picture To determine that our system would work, it was first tested in silico. Details on the model of this system can be found on our <a href="https://2017.igem.org/Team:Newcastle/InterLab">Modelling pages</a>.
 
      
 
      
 
<img src="https://static.igem.org/mediawiki/2017/5/5c/Iptg_framework.jpg" style="margin: 2%; max-width: 70%">
 
<img src="https://static.igem.org/mediawiki/2017/5/5c/Iptg_framework.jpg" style="margin: 2%; max-width: 70%">
Line 1,023: Line 1,023:
 
           </br></br>
 
           </br></br>
 
           </br></br>
 
           </br></br>
          Parts were synthesised by IDT and integration into the pSB1C3 plasmid confirmed by colony PCR and subsequent sequencing. Red boxes show part later used for biobrick production. picture </p>
+
          <p>Parts were synthesised by IDT and integration into the pSB1C3 plasmid confirmed by colony PCR and subsequent sequencing. Red boxes show part later used for biobrick production. picture </p>
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Characterisation </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Characterisation </h2>

Revision as of 13:41, 29 October 2017

spacefill

Our Experimental Results

Biochemical Adaptor

Target

Detector Modules

Multicellular Framework Testing

C12 HSL: Connector 1

Processor Modules

Framework in Cell Free Protein Synthesis Systems

C4 HSL: Connector 2

Reporter Modules



Looking for Interlab Study
related results? Click below!