Difference between revisions of "Team:Newcastle/Results"

Line 940: Line 940:
  
 
           </br></br>
 
           </br></br>
</b>In order to test these two chromoproteins reporter variants into the Sensynova framework, cultures of IPTG detector, processor unit and three reporter modules, two chromopreteins and the sfGFP control, were inoculated and grown overnight in LB+chloramphenicol(12,5ng/ul).  
+
</b>In order to test these two chromoproteins reporter variants into the Sensynova framework, cultures of IPTG detector, processor unit and three reporter modules, two chromopreteins and the sfGFP control, were inoculated and grown overnight in LB+chloramphenicol (12,5ng/ul).  
 
           </br></br>
 
           </br></br>
 
The cultures were then diluted at OD600: 0,1 and mixed together to obtain co-cultures with ratio 1:1:1 and 1:1:13. Some samples were supplemented with 1mM IPTG to induce the expression of quorum sensing molecules and eventually achieve the chromoproteins visualisation (Figures 6, 7, 8).  
 
The cultures were then diluted at OD600: 0,1 and mixed together to obtain co-cultures with ratio 1:1:1 and 1:1:13. Some samples were supplemented with 1mM IPTG to induce the expression of quorum sensing molecules and eventually achieve the chromoproteins visualisation (Figures 6, 7, 8).  
Line 953: Line 953:
 
<img src="https://static.igem.org/mediawiki/2017/8/84/Frameworkfluo.jpg" width="360px"/> </br>
 
<img src="https://static.igem.org/mediawiki/2017/8/84/Frameworkfluo.jpg" width="360px"/> </br>
 
<img src="https://static.igem.org/mediawiki/2017/3/3e/Pink_pellets2.jpg" width="360px"/>
 
<img src="https://static.igem.org/mediawiki/2017/3/3e/Pink_pellets2.jpg" width="360px"/>
<p class="legend"><strong>Figure 10:</strong> Pellets collected after overnight co-cultures of IPTG detector((<a href="http://parts.igem.org/Part:BBa_K2205009">BBa_K2205009</a>) + processor(<a href="http://parts.igem.org/Part:BBa_K2205012">BBa_K2205012</a>) + Pink Chromoprotein reporter(<a href="http://parts.igem.org/Part:BBa_K2205018">BBa_K2205018</a>)in ratios 1:1:1 and 1:1:13, with and without 1mM IPTG.</p>
+
<p class="legend"><strong>Figure 6:</strong> Pellets collected after overnight co-cultures of IPTG detector (<a href="http://parts.igem.org/Part:BBa_K2205009">BBa_K2205009</a>) + processor (<a href="http://parts.igem.org/Part:BBa_K2205012">BBa_K2205012</a>) + Pink Chromoprotein reporter (<a href="http://parts.igem.org/Part:BBa_K2205018">BBa_K2205018</a>) in ratios 1:1:1 and 1:1:13, with and without 1mM IPTG.</p>
 
</div>
 
</div>
  
Line 962: Line 962:
 
<img src="https://static.igem.org/mediawiki/2017/4/49/Framework_blue.jpg" width="360px"/> </br>
 
<img src="https://static.igem.org/mediawiki/2017/4/49/Framework_blue.jpg" width="360px"/> </br>
 
<img src="https://static.igem.org/mediawiki/2017/8/80/Blue_pellets2.jpg" width="360px"/>
 
<img src="https://static.igem.org/mediawiki/2017/8/80/Blue_pellets2.jpg" width="360px"/>
<p class="legend"><strong>Figure 11:</strong> Pellets collected after overnight co-cultures of IPTG detector((<a href="http://parts.igem.org/Part:BBa_K2205009">BBa_K2205009</a>) + processor(<a href="http://parts.igem.org/Part:BBa_K2205012">BBa_K2205012</a>) + Blue Chromoprotein reporter( <a href="http://parts.igem.org/Part:BBa_K2205016">BBa_K2205016</a>) in ratios 1:1:1 and 1:1:13, with and without 1mM IPTG.</p>
+
<p class="legend"><strong>Figure 7:</strong> Pellets collected after overnight co-cultures of IPTG detector (<a href="http://parts.igem.org/Part:BBa_K2205009">BBa_K2205009</a>) + processor (<a href="http://parts.igem.org/Part:BBa_K2205012">BBa_K2205012</a>) + Blue Chromoprotein reporter ( <a href="http://parts.igem.org/Part:BBa_K2205016">BBa_K2205016</a>) in ratios 1:1:1 and 1:1:13, with and without 1mM IPTG.</p>
 
</div>
 
</div>
  
Line 971: Line 971:
 
<img src="https://static.igem.org/mediawiki/2017/f/f2/T--Newcastle--BB_framework_framework_green.jpg" width="360px"/> </br>
 
<img src="https://static.igem.org/mediawiki/2017/f/f2/T--Newcastle--BB_framework_framework_green.jpg" width="360px"/> </br>
 
<img src="https://static.igem.org/mediawiki/2017/e/e7/Gfp_pellets2.jpg" width="360px"/>
 
<img src="https://static.igem.org/mediawiki/2017/e/e7/Gfp_pellets2.jpg" width="360px"/>
<p class="legend"><strong>Figure 12:</strong> Pellets collected after overnight co-cultures of IPTG detector(<a href="http://parts.igem.org/Part:BBa_K2205009">BBa_K2205009</a>) + processor(<a href="http://parts.igem.org/Part:BBa_K2205012">BBa_K2205012</a>) + sfGFP reporter(<a href="http://parts.igem.org/Part:BBa_K2205015">BBa_K2205015</a>)in ratios 1:1:1 and 1:1:13, with and without 1mM IPTG.</p>
+
<p class="legend"><strong>Figure 8:</strong> Pellets collected after overnight co-cultures of IPTG detector (<a href="http://parts.igem.org/Part:BBa_K2205009">BBa_K2205009</a>) + processor (<a href="http://parts.igem.org/Part:BBa_K2205012">BBa_K2205012</a>) + sfGFP reporter (<a href="http://parts.igem.org/Part:BBa_K2205015">BBa_K2205015</a>) in ratios 1:1:1 and 1:1:13, with and without 1mM IPTG.</p>
 
</div>
 
</div>
  
Line 978: Line 978:
 
</tr>
 
</tr>
 
</table>
 
</table>
<p>The three experiment sets clearly demonstrate that the framework is optimised when a higher concentration of cells expressing the reporter device is present (Figures 10, 11, 12, samples labelled 1:1:13). This can be considered as a further validation of our fine-tuning approach using the <a href="https://2017.igem.org/Team:Newcastle/Model#sim">simbiotics model</a> and the previous plate reader experiments.
+
<p>The three experiment sets clearly demonstrate that the framework is optimised when a higher concentration of cells expressing the reporter device is present (Figures 6, 7, 8, samples labelled 1:1:13).  
Although a background signal is visible in the systems expressing the pink (<a href="http://parts.igem.org/Part:BBa_K2205018">BBa_K2205018</a>)and the sfGPF(<a href="http://parts.igem.org/Part:BBa_K2205015">BBa_K2205015</a>) reporters, the blue reporter (<a href="http://parts.igem.org/Part:BBa_K2205016">BBa_K2205016</a>) due to its lowest background level, constitutes the most suitable reporter module for the Sensynova platform customised as IPTG biosensor. This highlights a crucial advantage of our multicellular, modular framework, which enables each component to be optimised avoiding any extra cloning steps. As each biosensor may be different and require specific designs and optimisation,  easily choosing and changing modules and predicting in silico the bacterial community behavior is essential for the development of new biosensor platforms. </p>
+
          </br></br>
 +
Although a background signal is visible in the systems expressing the pink (<a href="http://parts.igem.org/Part:BBa_K2205018">BBa_K2205018</a>) and the sfGPF (<a href="http://parts.igem.org/Part:BBa_K2205015">BBa_K2205015</a>) reporters, the blue reporter (<a href="http://parts.igem.org/Part:BBa_K2205016">BBa_K2205016</a>) due to its lowest background level, constitutes the most suitable reporter module for the Sensynova platform when customised as IPTG biosensor.  
 +
          </br></br>
 +
This highlights a crucial advantage of our multicellular, modular framework, which enables each component to be optimised avoiding any extra cloning steps. As each biosensor may be different and require specific designs and optimisation,  easily choosing and changing modules and predicting in silico the bacterial community behaviour is essential for the development of new biosensor platforms. </p>
  
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Conclusions and Future Work </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Conclusions and Future Work </h2>

Revision as of 14:39, 30 October 2017

spacefill

Our Experimental Results

Biochemical Adaptor

Target

Detector Modules

Multicellular Framework Testing

C12 HSL: Connector 1

Processor Modules

Framework in Cell Free Protein Synthesis Systems

C4 HSL: Connector 2

Reporter Modules



Looking for Interlab Study
related results? Click below!