Difference between revisions of "Team:Newcastle/Results"

Line 512: Line 512:
 
           <p> In the presence of arsenic, the repression will be avoided by binding the repressor ArsR This bound allows the transcription of the downstream gene, <i>lasI</i>. This gene encodes for the quorum sensing molecule C12, which acts as a connector to the processing cell.</p>
 
           <p> In the presence of arsenic, the repression will be avoided by binding the repressor ArsR This bound allows the transcription of the downstream gene, <i>lasI</i>. This gene encodes for the quorum sensing molecule C12, which acts as a connector to the processing cell.</p>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Characterisation </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Characterisation </h2>
           <p><b>Qualitative assay.</b>Due to time constraints only a preliminary qualitative assay was carried out. Co-cultures of IPTG detector, processor unit and 3 different reporter modules carrying 2 chromoproteins (Chromoproteins link)(BBa_K2205016, BBa_K2205018)and sfGFP(BBa_K2205015) were inoculated and grown overnight in LB+chloramphenicol(12,5ng/ul). The day after the cultures were diluted at OD600: 0,1 and mixed together to obtain co-cultures with ratio 1:1:13 (detector:processor:reporter). The samples were supplemented with different concentration of Arsenic solution(oppb, 10ppb, 50ppb, 100ppb) to induce the expression of quorum sensing molecules and eventually achieve the chromoproteins visualisation (Figures 10, 11, 12). </p>
+
           <p><b>Qualitative assay.</b> Due to time constraints only a preliminary qualitative assay was carried out. Co-cultures of IPTG detector, processor unit and 3 different reporter modules carrying 2 chromoproteins (Chromoproteins link)(BBa_K2205016, BBa_K2205018)and sfGFP(BBa_K2205015) were inoculated and grown overnight in LB+chloramphenicol (12,5ng/ul). The day after the cultures were diluted at OD600: 0,1 and mixed together to obtain co-cultures with ratio 1:1:13 (detector:processor:reporter). The samples were supplemented with different concentration of Arsenic solution(oppb, 10ppb, 50ppb, 100ppb) to induce the expression of quorum sensing molecules and eventually achieve the chromoproteins visualisation (Figures 10, 11, 12). </p>
 
<table class="image_table" style="background:none">
 
<table class="image_table" style="background:none">
 
<tr>
 
<tr>
Line 616: Line 616:
  
 
<h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Characterisation</h2>
 
<h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Characterisation</h2>
 +
<p><b>Qualitative assay.</b> Due to time constraints only a preliminary qualitative assay was carried out. Co-cultures of Psicose detector, processor unit and sfGFP reporter(BBa_K2205015) were inoculated and grown overnight in LB+chloramphenicol (12,5ng/ul). The day after the cultures were diluted at OD600: 0,1 and mixed together to obtain co-cultures with ratio 1:1:13 (detector:processor:reporter). The samples were supplemented with 33.22 mM Psicose to induce the expression of quorum sensing molecules and eventually achieve the reporter visualisation (Figures 8). </p>
  
 
<img src="https://static.igem.org/mediawiki/2017/f/f2/T--Newcastle--BB_framework_framework_green.jpg" width="360px"/> </br>
 
<img src="https://static.igem.org/mediawiki/2017/f/f2/T--Newcastle--BB_framework_framework_green.jpg" width="360px"/> </br>

Revision as of 11:00, 31 October 2017

spacefill

Our Experimental Results

Biochemical Adaptor

Target

Detector Modules

Multicellular Framework Testing

C12 HSL: Connector 1

Processor Modules

Framework in Cell Free Protein Synthesis Systems

C4 HSL: Connector 2

Reporter Modules



Looking for Interlab Study
related results? Click below!