Difference between revisions of "Team:Newcastle/Results"

Line 763: Line 763:
 
           <p>To assemble the Fim switch part the isothermal Gibson assembly cloning method was chosen as it would significantly shorten the time taken to assemble 3 separate sequences compared to traditional cloning methods.  The 3 gBlock DNA fragments shown in (Table 1) were amplified by high fidelity Q5 PCR and the pSB1C3 backbone was digested with restriction enzymes EcoRI and PstI.  <br/><br/>
 
           <p>To assemble the Fim switch part the isothermal Gibson assembly cloning method was chosen as it would significantly shorten the time taken to assemble 3 separate sequences compared to traditional cloning methods.  The 3 gBlock DNA fragments shown in (Table 1) were amplified by high fidelity Q5 PCR and the pSB1C3 backbone was digested with restriction enzymes EcoRI and PstI.  <br/><br/>
 
<img class="FIM" style="width:100%" src="https://static.igem.org/mediawiki/2017/d/d8/--T--Newcastle_amplify_G_Fim.png"/>
 
<img class="FIM" style="width:100%" src="https://static.igem.org/mediawiki/2017/d/d8/--T--Newcastle_amplify_G_Fim.png"/>
<b>Figure 3:</b> <!--- Insert image name between tags. ---->
+
<center><b>Figure 3:</b> <!--- Insert image name between tags. ---->
High fidelity amplification of the 3 gBlock fragments for assembly of the Fim Switch.  The gBlock-1 amplification is shown in lanes 1+2 (819 bp), gBlock-2 amplification is shown in lanes 3+4 (1148 bp) and the gBlock-3 amplification is shown in lanes 5+6 (939bp).
+
High fidelity amplification of the 3 gBlock fragments for assembly of the Fim Switch.  The gBlock-1 amplification is shown in lanes 1+2 (819 bp), gBlock-2 amplification is shown in lanes 3+4 (1148 bp) and the gBlock-3 amplification is shown in lanes 5+6 (939bp).</center>
 
<br /><br/>
 
<br /><br/>
 
The Gibson assembly reaction re-forms the iGEM prefix and suffix regions at the 5’ and 3’ ends of the Fim switch part making the component biobrick compatible while leaving no scarring regions.  Following assembly, the plasmid was transformed into chemically competent  <a href="https://static.igem.org/mediawiki/2017/1/1f/T--Newcastle--ecoli_transformation_bb.pdf">DH5α <i>E. coli</i></a> and colonies patched onto LB Chloramphenicol agar plates.  A single patch showed the correct red colour indicative of the eforRed chromoprotein (see Figure 4). <br/><br/>
 
The Gibson assembly reaction re-forms the iGEM prefix and suffix regions at the 5’ and 3’ ends of the Fim switch part making the component biobrick compatible while leaving no scarring regions.  Following assembly, the plasmid was transformed into chemically competent  <a href="https://static.igem.org/mediawiki/2017/1/1f/T--Newcastle--ecoli_transformation_bb.pdf">DH5α <i>E. coli</i></a> and colonies patched onto LB Chloramphenicol agar plates.  A single patch showed the correct red colour indicative of the eforRed chromoprotein (see Figure 4). <br/><br/>
 
<img class="FIM" style="width:100%" src="https://static.igem.org/mediawiki/2017/6/62/--T--Newcastle--MP--Fim_Red_Plates.jpeg"/>
 
<img class="FIM" style="width:100%" src="https://static.igem.org/mediawiki/2017/6/62/--T--Newcastle--MP--Fim_Red_Plates.jpeg"/>
<b>Figure 4:</b> <!--- Insert image name between tags. ---->
+
<center><b>Figure 4:</b> <!--- Insert image name between tags. ---->
  Patches of the Fim Switch transformants.  Patch number 6 shows the correct red colour which indicates expression of the eforRed chromoprotein.
+
  Patches of the Fim Switch transformants.  Patch number 6 shows the correct red colour which indicates expression of the eforRed chromoprotein.</center>
 
<br /><br/>
 
<br /><br/>
 
The red patch was cultured in LB chloramphenicol overnight and the plasmid DNA extracted by miniprep.  The plasmid was digested with restriction enzymes XbaI and PstI.  The image in Figure 5 shows the DNA bands from the digested Fim switch plasmid.<br/><br/>
 
The red patch was cultured in LB chloramphenicol overnight and the plasmid DNA extracted by miniprep.  The plasmid was digested with restriction enzymes XbaI and PstI.  The image in Figure 5 shows the DNA bands from the digested Fim switch plasmid.<br/><br/>
 
<img class="FIM" style="width:40%" src="https://static.igem.org/mediawiki/2017/f/fd/--T--Newcastle--MP--Restriction_Digest.png"/><br/>
 
<img class="FIM" style="width:40%" src="https://static.igem.org/mediawiki/2017/f/fd/--T--Newcastle--MP--Restriction_Digest.png"/><br/>
<b>Figure 5: </b> <!--- Insert image name between tags. ---->
+
<center><b>Figure 5: </b> <!--- Insert image name between tags. ---->
Restriction digestion of the Fim switch plasmid to confirm successful integration into the iGEM pSB1C3 backbone.  The Fim switch plasmid (Lane 1) was digested with XbaI and PstI with expected band sizes of (2840 bp and 2044 bp).  The pSB1C3 plasmid (Lane 2) containing sfGFP as a control was also digested with XbaI and PstI with expected band sizes of (811 bp and 2044 bp).<br/><br/>
+
Restriction digestion of the Fim switch plasmid to confirm successful integration into the iGEM pSB1C3 backbone.  The Fim switch plasmid (Lane 1) was digested with XbaI and PstI with expected band sizes of (2840 bp and 2044 bp).  The pSB1C3 plasmid (Lane 2) containing sfGFP as a control was also digested with XbaI and PstI with expected band sizes of (811 bp and 2044 bp).</center><br/><br/>
 
The Fim switch insert is 2882 bp in length which makes performing standard short sequencing reads challenging as multiple reactions are required to completely sequence the entire part.  To overcome this we used our in-house Illumina MiSEQ to completely sequence the entire plasmid.  Following quality control analysis the sequence was assembled and shown to be a match to the expected Fim switch part.<br/><br/>
 
The Fim switch insert is 2882 bp in length which makes performing standard short sequencing reads challenging as multiple reactions are required to completely sequence the entire part.  To overcome this we used our in-house Illumina MiSEQ to completely sequence the entire plasmid.  Following quality control analysis the sequence was assembled and shown to be a match to the expected Fim switch part.<br/><br/>
 
A problem we found with the Fim switch was that a subset of the colonies were prematurely switching from red to white.  This is likely due to a low level of leaky expression of the <i>fimE</i> gene which then inverts the promoter region upstream of the eforRed gene.  A single white colony was picked and cultured for use in downstream testing as a control as the switching of the promoter should express the <i>rhlI</i> gene and therefor produce the C4 quorum sensing molecule.<br/><br/>
 
A problem we found with the Fim switch was that a subset of the colonies were prematurely switching from red to white.  This is likely due to a low level of leaky expression of the <i>fimE</i> gene which then inverts the promoter region upstream of the eforRed gene.  A single white colony was picked and cultured for use in downstream testing as a control as the switching of the promoter should express the <i>rhlI</i> gene and therefor produce the C4 quorum sensing molecule.<br/><br/>
Line 789: Line 789:
 
<img class="FIM"  style="width:40%" src="https://static.igem.org/mediawiki/2017/b/bb/T--Newcastle--MP_Char1.jpeg"/>
 
<img class="FIM"  style="width:40%" src="https://static.igem.org/mediawiki/2017/b/bb/T--Newcastle--MP_Char1.jpeg"/>
 
<br />
 
<br />
<b>Figure 6:</b> Initial test of the red and white fim switch strains which were spotted onto a lawn of the reporter strain (<a href="http://parts.igem.org/Part:BBa_K2205015">BBa_K2205015</a>).<br/>
+
<center><b>Figure 6:</b> Initial test of the red and white fim switch strains which were spotted onto a lawn of the reporter strain (<a href="http://parts.igem.org/Part:BBa_K2205015">BBa_K2205015</a>).</center><br/>
 
<br />
 
<br />
 
<img class="FIM" style="width:100%" src="https://static.igem.org/mediawiki/2017/0/01/T--Newcastle--iGEM_FimS_Graph.jpg"/><br/>
 
<img class="FIM" style="width:100%" src="https://static.igem.org/mediawiki/2017/0/01/T--Newcastle--iGEM_FimS_Graph.jpg"/><br/>
<b>Figure 7:</b> <!--- Insert image name between tags. ---->
+
<center><b>Figure 7:</b> <!--- Insert image name between tags. ---->
  Expression of GFP in the reporter (<a href="http://parts.igem.org/Part:BBa_K2205015">BBa_K2205015</a>)strain in co-culture with the Fim switch strains.  The assay was performed using methods described in <a href="https://static.igem.org/mediawiki/parts/b/b1/--T--Newcastle--MP--Protocol--Fim--96.pdf">Fim 96 Plate assay Protocol</a>.  The data shows the expression of GFP in the reporter strain over a standard growth curve.  The FimW and FimR strains represent the white and red variants of the Fim switch strain respectively, these were co-cultured with the reporter strain in a 1:14 ratio.  Each data point is the mean of 3 biological repeats.  RFU stands for relative fluorescence units.<br/><br/>
+
  Expression of GFP in the reporter (<a href="http://parts.igem.org/Part:BBa_K2205015">BBa_K2205015</a>)strain in co-culture with the Fim switch strains.  The assay was performed using methods described in <a href="https://static.igem.org/mediawiki/parts/b/b1/--T--Newcastle--MP--Protocol--Fim--96.pdf">Fim 96 Plate assay Protocol</a>.  The data shows the expression of GFP in the reporter strain over a standard growth curve.  The FimW and FimR strains represent the white and red variants of the Fim switch strain respectively, these were co-cultured with the reporter strain in a 1:14 ratio.  Each data point is the mean of 3 biological repeats.  RFU stands for relative fluorescence units.</center><br/><br/>
 
<br />
 
<br />
 
</p>
 
</p>
Line 843: Line 843:
 
           <img class="img-fluid border border-dark rounded" style="margin: 2%" src="https://static.igem.org/mediawiki/2017/a/a4/T--Newcastle--Lais--ST--C1--SBOL.png"></img>
 
           <img class="img-fluid border border-dark rounded" style="margin: 2%" src="https://static.igem.org/mediawiki/2017/a/a4/T--Newcastle--Lais--ST--C1--SBOL.png"></img>
 
<p>
 
<p>
<h3><b>Figure 1:</b> <!--- Insert image name between tags. ---->
+
<center><h3><b>Figure 1:</b> <!--- Insert image name between tags. ---->
<i> <b> Cambridge 2007 Amplifier System </i> </b> </h3> <!--- Described what the diagram is showing. If biobricks are depicted give BBa_ numbers -->
+
<i> <b> Cambridge 2007 Amplifier System </i> </b> </h3></center> <!--- Described what the diagram is showing. If biobricks are depicted give BBa_ numbers -->
 
</p></br>
 
</p></br>
  

Revision as of 19:21, 31 October 2017

spacefill

Our Experimental Results



Below is a diagram of our Sensynova Framework. Clicking on each part of the framework (e.g. detector modules) links to the relevant results.

Alternatively, at the bottom of this page are tabs which will show you results for every part of the project



Framework

Framework Chassis

Biochemical Adaptor

Target

Detector Modules

Multicellular Framework Testing

C12 HSL: Connector 1

Processor Modules

Framework in Cell Free Protein Synthesis Systems

C4 HSL: Connector 2

Reporter Modules



Looking for Interlab Study
related results? Click below!