Difference between revisions of "Team:Newcastle/Results"

Line 798: Line 798:
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Design Stage </h2>
 
           <p>To construct the Fim reporter switch 3 separate gBlocks were designed with overlapping adapter regions homologous to the iGEM prefix and suffix to allow for Gibson assembly into the pSB1C3 backbone whilst retaining biobrick compatibility.  The individual genes and other components are shown in (Table 1).  The 1st gBlock sequence starts with a RBS (<a href="http://parts.igem.org/Part:BBa_B0034">B0034</a>) upstream of the <i>fimE</i> ORF (<a href="http://parts.igem.org/Part:BBa_K137007">K137007</a>) with no promoter region, this is to allow for other promoters to be cloned in upstream of the part.  Downstream of the <i>fimE</i> gene is a double terminator (<a href="http://parts.igem.org/Part:BBa_B0015">B0015</a>).  All RBS and terminator sequences used are B0034 and B0015 respectively.  The switching mechanism consists of the Fim promoter sequence (<a href="http://parts.igem.org/Part:BBa_K1632004">K1632004</a>) flanked by two RBS-ORF-Terminator sequences.  While in the native [OFF] state the Fim promoter drives expression of eforRed (<a href="http://parts.igem.org/Part:BBa_K592012">K592012</a>) and when flipped to the [ON] state drives expression of <i>rhlI</i> (<a href="http://parts.igem.org/Part:BBa_J64718)">J64718)</a>.  The rationale behind using the <i>fimE</i> gene instead of<i>fimB</i> is that it permanently inverts the promoter region meaning weak induction signals can be amplified by the Fim switch. <br/><br/>
 
           <p>To construct the Fim reporter switch 3 separate gBlocks were designed with overlapping adapter regions homologous to the iGEM prefix and suffix to allow for Gibson assembly into the pSB1C3 backbone whilst retaining biobrick compatibility.  The individual genes and other components are shown in (Table 1).  The 1st gBlock sequence starts with a RBS (<a href="http://parts.igem.org/Part:BBa_B0034">B0034</a>) upstream of the <i>fimE</i> ORF (<a href="http://parts.igem.org/Part:BBa_K137007">K137007</a>) with no promoter region, this is to allow for other promoters to be cloned in upstream of the part.  Downstream of the <i>fimE</i> gene is a double terminator (<a href="http://parts.igem.org/Part:BBa_B0015">B0015</a>).  All RBS and terminator sequences used are B0034 and B0015 respectively.  The switching mechanism consists of the Fim promoter sequence (<a href="http://parts.igem.org/Part:BBa_K1632004">K1632004</a>) flanked by two RBS-ORF-Terminator sequences.  While in the native [OFF] state the Fim promoter drives expression of eforRed (<a href="http://parts.igem.org/Part:BBa_K592012">K592012</a>) and when flipped to the [ON] state drives expression of <i>rhlI</i> (<a href="http://parts.igem.org/Part:BBa_J64718)">J64718)</a>.  The rationale behind using the <i>fimE</i> gene instead of<i>fimB</i> is that it permanently inverts the promoter region meaning weak induction signals can be amplified by the Fim switch. <br/><br/>
<b>Table 1:</b> Table of parts used for constructing the Fim Switch.<br/>
+
<center><b>Table 1:</b> Table of parts used for constructing the Fim Switch.<br/></center>
 
<img class="FIM" style="width:100%" src="https://static.igem.org/mediawiki/2017/e/ee/--T--Newcastle--MP--Table_Fim.png"/>
 
<img class="FIM" style="width:100%" src="https://static.igem.org/mediawiki/2017/e/ee/--T--Newcastle--MP--Table_Fim.png"/>
 
</p>
 
</p>
Line 1,262: Line 1,262:
 
           </br>
 
           </br>
 
<p>
 
<p>
<b>Table 1: </b>Percentages of biosensors components used in iGEM. </p>
+
<center><b>Table 1: </b>Percentages of biosensors components used in iGEM. </center></p>
 
<img src="https://static.igem.org/mediawiki/2017/2/25/Igembiosensors_table.png" class="img-fluid rounded mx-auto d-block" style="max-width: 60%" alt="">
 
<img src="https://static.igem.org/mediawiki/2017/2/25/Igembiosensors_table.png" class="img-fluid rounded mx-auto d-block" style="max-width: 60%" alt="">
 
</br></br>
 
</br></br>
Line 1,474: Line 1,474:
 
<div style="width:410px">
 
<div style="width:410px">
 
<br />
 
<br />
<p class="legend"><strong>Table 1:</strong> Concentrations for amino acid stock solutions (first column), 10x amino acid mix (second column), and for each CFPS system (third column).</p>
+
<p class="legend"><center><strong>Table 1:</strong> Concentrations for amino acid stock solutions (first column), 10x amino acid mix (second column), and for each CFPS system (third column).</center></p>
 
<img src="https://static.igem.org/mediawiki/2017/f/fd/T--Newcastle--BB_amino_acid_amounts.png" width="400px"/>
 
<img src="https://static.igem.org/mediawiki/2017/f/fd/T--Newcastle--BB_amino_acid_amounts.png" width="400px"/>
 
</div>
 
</div>
Line 1,520: Line 1,520:
  
 
<div style="width:410px">
 
<div style="width:410px">
<p class="legend"><strong>Table 2:</strong> Table of reactions performed according to the DoE salt supplement screening design. CFPS reactions contained concentrations of each salt supplement according to the table above. The pattern column shows whether a salt was present (✔)  or absent (X) from the system.</p>
+
<p class="legend"><center><strong>Table 2:</strong> Table of reactions performed according to the DoE salt supplement screening design. CFPS reactions contained concentrations of each salt supplement according to the table above. The pattern column shows whether a salt was present (✔)  or absent (X) from the system.</center></p>
 
<img src="https://static.igem.org/mediawiki/2017/6/62/T--Newcastle--BB_CFPS_table2.png" width="400px"/>
 
<img src="https://static.igem.org/mediawiki/2017/6/62/T--Newcastle--BB_CFPS_table2.png" width="400px"/>
 
</div>
 
</div>
Line 1,565: Line 1,565:
  
 
<div style="width:310px;">
 
<div style="width:310px;">
<p class="legend"><strong>Table 3:</strong> Table of reactions performed according to the DoE salt supplement surface response design. CFPS reactions contained concentrations of magnesium glutamate, potassium glutamate, and sodium oxalate, according to the table above. The pattern column shows how much of each supplement was present in a reaction; very low concentration (a), low concentration (−), usual concentration (0), high concentration (+), and very high concentration (A).</p>
+
<p class="legend"><center><strong>Table 3:</strong> Table of reactions performed according to the DoE salt supplement surface response design. CFPS reactions contained concentrations of magnesium glutamate, potassium glutamate, and sodium oxalate, according to the table above. The pattern column shows how much of each supplement was present in a reaction; very low concentration (a), low concentration (−), usual concentration (0), high concentration (+), and very high concentration (A).</center></p>
 
<img src="https://static.igem.org/mediawiki/2017/4/4d/T--Newcastle--BB_CFPS_table3.png" width="300px"/>
 
<img src="https://static.igem.org/mediawiki/2017/4/4d/T--Newcastle--BB_CFPS_table3.png" width="300px"/>
 
</div>
 
</div>
Line 1,613: Line 1,613:
  
 
<div>
 
<div>
<p class="legend"><strong>Table 4:</strong> Table of reactions performed according to the DoE full supplement solution screening design. CFPS reactions contained concentrations of each supplement according to the table above.</p>
+
<p class="legend"><center><strong>Table 4:</strong> Table of reactions performed according to the DoE full supplement solution screening design. CFPS reactions contained concentrations of each supplement according to the table above.</center></p>
 
<img src="https://static.igem.org/mediawiki/2017/e/e2/T--Newcastle--BB_CFPS_Table4.png" width="600px" style="background-color:white;"/>
 
<img src="https://static.igem.org/mediawiki/2017/e/e2/T--Newcastle--BB_CFPS_Table4.png" width="600px" style="background-color:white;"/>
 
</div>
 
</div>

Revision as of 19:54, 31 October 2017

spacefill

Our Experimental Results



Below is a diagram of our Sensynova Framework. Clicking on each part of the framework (e.g. detector modules) links to the relevant results.

Alternatively, at the bottom of this page are tabs which will show you results for every part of the project



Framework

Framework Chassis

Biochemical Adaptor

Target

Detector Modules

Multicellular Framework Testing

C12 HSL: Connector 1

Processor Modules

Framework in Cell Free Protein Synthesis Systems

C4 HSL: Connector 2

Reporter Modules



Looking for Interlab Study
related results? Click below!