Difference between revisions of "Team:Newcastle/Results"

Line 446: Line 446:
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Conclusions and Future Work </h2>
 
           <h2 style="font-family: Rubik; text-align: left; margin-top: 1%"> Conclusions and Future Work </h2>
 
           <p><i>E. coli</i> cells naturally have the C-P lyase pathway which degrades glyphosate into sarcosine. The fact that no formaldehyde was produced when glyphosate was added, but was when sarcosine was added, indicates that we have not overexpressed the C-P lyase pathway enough to produce enough sarcosine for SOX to convert into formaldehyde to be detected.
 
           <p><i>E. coli</i> cells naturally have the C-P lyase pathway which degrades glyphosate into sarcosine. The fact that no formaldehyde was produced when glyphosate was added, but was when sarcosine was added, indicates that we have not overexpressed the C-P lyase pathway enough to produce enough sarcosine for SOX to convert into formaldehyde to be detected.
 +
          </br></br>
 +
        <p>Due to time constraints, we were unable to produce an in vivo formaldehyde detector variant of the Sensynova framework. Future characterisation of this part would include using the platform customised as a formaldehyde biosensor.
 
           </p>
 
           </p>
  

Revision as of 20:15, 31 October 2017

spacefill

Our Experimental Results



Below is a diagram of our Sensynova Framework. Clicking on each part of the framework (e.g. detector modules) links to the relevant results.

Alternatively, at the bottom of this page are tabs which will show you results for every part of the project



Framework

Framework Chassis

Biochemical Adaptor

Target

Detector Modules

Multicellular Framework Testing

C12 HSL: Connector 1

Processor Modules

Framework in Cell Free Protein Synthesis Systems

C4 HSL: Connector 2

Reporter Modules



Looking for Interlab Study
related results? Click below!